Eigenvalues & Eigenvectors

Example

Suppose
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
. Then $A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_1 \\ x_2 \end{pmatrix}$. So, geometrically,

multiplying a vector in \mathbb{R}^2 by the matrix A results in a vector which is a reflection of the given vector about the *y*-axis.

We observe that

$$A\begin{pmatrix}x_1\\0\end{pmatrix} = \begin{pmatrix}-1 & 0\\0 & 1\end{pmatrix}\begin{pmatrix}x_1\\0\end{pmatrix} = \begin{pmatrix}-x_1\\0\end{pmatrix} = -1\begin{pmatrix}x_1\\0\end{pmatrix}$$

and

$$A\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}-1&0\\0&1\end{pmatrix}\begin{pmatrix}0\\x_2\end{pmatrix} = \begin{pmatrix}0\\x_2\end{pmatrix}.$$

Thus, vectors on the coordinate axes get mapped to vectors on the same coordinate axis. That is,

for vectors on the coordinate axes we see that $A\begin{pmatrix}x_1\\x_2\end{pmatrix}$ and $\begin{pmatrix}x_1\\x_2\end{pmatrix}$ are parallel or, equivalently,

for vectors on the coordinate axes there exists a scalar λ so that $A\begin{pmatrix}x_1\\x_2\end{pmatrix} = \lambda\begin{pmatrix}x_1\\x_2\end{pmatrix}$. In

particular, $\lambda = -1$ for vectors on the x-axis and $\lambda = 1$ for vectors on the y-axis. Given the geometric properties of $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ we see that $A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ has solutions only

when
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is on one of the coordinate axes.

Definition

Let *A* be an $n \times n$ matrix. We call a scalar λ an *eigenvalue* of *A* provided there exists a nonzero *n*-vector *x* so that $A = \lambda x$. In this case, we call the *n*-vector *x* an *eigenvector* of *A* corresponding to λ .

We note that $A = \lambda x$ is true for all λ in the case that $x = 0_{n \times 1}$ and, hence, is not particularly interesting. We do allow for the possibility that $\lambda = 0$.

Eigenvalues are also called *proper values* ("eigen" is German for the word "own" or "proper") or *characteristic values* or *latent values*. Eigenvalues were initial used by Leonhard Euler in 1743 in connection with the solution to an n^{th} order linear differential equation with constant coefficients.

Geometrically, the equation $A = \lambda x$ implies that the *n*-vectors $A = \lambda x$ are parallel.

Example

Suppose $A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$. Then $\begin{pmatrix} 6 \\ 6 \end{pmatrix}$ is an *eigenvector* for A corresponding to the *eigenvalue* of $\lambda = 2$ as

$$A\begin{pmatrix}6\\6\end{pmatrix}=\begin{pmatrix}1&1\\-2&4\end{pmatrix}\begin{pmatrix}6\\6\end{pmatrix}=\begin{pmatrix}12\\12\end{pmatrix}=2\begin{pmatrix}6\\6\end{pmatrix}.$$

In fact, by direct computation, any vector of the form $\begin{pmatrix} k \\ k \end{pmatrix}$ is an eigenvector for A

corresponding to $\lambda = 2$. We also see that $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ is an *eigenvector* for *A* corresponding to the

eigenvalue $\lambda = 3$ since

$$A\begin{pmatrix}2\\4\end{pmatrix}=\begin{pmatrix}1&1\\-2&4\end{pmatrix}\begin{pmatrix}2\\4\end{pmatrix}=\begin{pmatrix}6\\12\end{pmatrix}=3\begin{pmatrix}2\\4\end{pmatrix}.$$

Suppose A is an $n \times n$ matrix and λ is a eigenvalue of A. If x is an eigenvector of A corresponding to λ and k is any scalar, then

$$\mathbf{A}(\mathbf{k}\mathbf{x}) = \mathbf{k}(\mathbf{A}\mathbf{x}) = \mathbf{k}(\mathbf{\lambda}\mathbf{x}) = \mathbf{\lambda}(\mathbf{k}\mathbf{x}).$$

So, any scalar multiple of an eigenvector is also an eigenvector for the given eigenvalue λ . Now, if $x_1 \& x_2$ are both eigenvectors of A corresponding to λ , then

$$A(x_1 + x_2) = A x_1 + A x_2 = \lambda x_1 + \lambda x_2 = \lambda (x_1 + x_2).$$

Thus, the set of all eigenvectors of *A* corresponding to given eigenvalue λ is closed under scalar multiplication and vector addition. This proves the following result:

Theorem

If A is an $n \times n$ matrix and λ is a eigenvalue of A, then the set of all eigenvectors of λ , together with the zero vector, forms a subspace of \mathbb{R}^n . We call this subspace the *eigenspace* of λ .

Example

Find the eigenvalues and the corresponding eigenspaces for the matrix $\mathbf{A} = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$.

Solution

We first seek all scalars λ so that $A = \lambda x$:

$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 10 - \lambda & -18 \\ 6 & -11 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The above has nontrivial solutions precisely when $\begin{pmatrix} 10 - \lambda & -18 \\ 6 & -11 - \lambda \end{pmatrix}$ is singular. That is,

the above matrix equation has nontrivial solutions when

$$Det \begin{pmatrix} 10 - \lambda & -18 \\ 6 & -11 - \lambda \end{pmatrix} = \begin{vmatrix} 10 - \lambda & -18 \\ 6 & -11 - \lambda \end{vmatrix}$$
$$= (10 - \lambda) (-11 - \lambda) - (-18) 6$$
$$= \lambda^2 + \lambda - 2$$
$$= (\lambda + 2) (\lambda - 1)$$
$$= 0.$$

Thus, the eigenvalues for $\mathbf{A} = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$ are $\lambda = -2$ & $\lambda = 1$. Since

$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

implies

$$\begin{pmatrix} 10 - \lambda & -18 \\ 6 & -11 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

the eigenspace of $A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$ corresponding to $\lambda = -2$ is the null space of

$$\begin{pmatrix} 10 - (-2) & -18 \\ 6 & -11 - (-2) \end{pmatrix} = \begin{pmatrix} 12 & -18 \\ 6 & -9 \end{pmatrix}.$$

Because

$$\begin{pmatrix} 12 & -18 \\ 6 & -9 \end{pmatrix} \sim \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix}$$

we see that the null space of $\begin{pmatrix} 12 & -18 \\ 6 & -9 \end{pmatrix}$ is given by $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$. In a similar manner, the

eigenspace for
$$\lambda = 1$$
 is the null space of $\begin{pmatrix} 10 - (1) & -18 \\ 6 & -11 - (1) \end{pmatrix} = \begin{pmatrix} 9 & -18 \\ 6 & -12 \end{pmatrix}$ which is

given by
$$\left\langle \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\rangle$$
.

Finding Eigenvalues:

Let A be an $n \times n$ matrix. Then

$$A x = \lambda x$$

$$Y \quad A x = \lambda I_n x$$

$$Y \quad A x - \lambda I_n x = 0_{n \times 1}$$

$$Y \quad (A - \lambda I_n) x = 0_{n \times 1}$$

It follows that

 λ is an eigenvalue of A if and only if $(A - \lambda I_n) x = 0_{n \times 1}$ if and only if $Det(A - \lambda I_n) = 0$.

<u>Theorem</u>

Let A be an $n \times n$ matrix. Then λ is an eigenvalue of A if and only if $Det(A - \lambda I_n) = 0$. Further, $Det(A - \lambda I_n) = 0$ is a polynomial in λ of degree ncalled the *characteristic polynomial* of A. We call $Det(A - \lambda I_n) = 0$ the *characteristic equation* of A.

Examples

1. Find the eigenvalues and the corresponding eigenspaces of the 2×2 matrix $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$.

Solution

Here

$$Det \left(A - \lambda I_n \right) = Det \begin{pmatrix} 2 - \lambda & -1 \\ -4 & 2 - \lambda \end{pmatrix}$$
$$= (2 - \lambda) (2 - \lambda) - (-1) (-4)$$
$$= \lambda^2 - 4\lambda$$
$$= \lambda (\lambda - 4)$$

and so the eigenvalues are $\lambda = 0$ & $\lambda = 4$. The eigenspace corresponding to $\lambda = 0$ is just the null space of the given matrix $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ which is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. The eigenspace

corresponding to $\lambda = 4$ is the null space of $\begin{pmatrix} -2 & -1 \\ -4 & -2 \end{pmatrix}$ which is $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Note: Here we have two distinct eigenvalues and two linearly independent eigenvectors (as $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is not a multiple of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$). We also see that $\begin{vmatrix} 2 & -1 \\ -4 & 2 \end{vmatrix} = 0$ (4) = 0.

2. Find the eigenvalues and the corresponding eigenspaces of the 2×2 matrix $\begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$.

Solution

Here

$$Det \left(A - \lambda I_{n} \right) = Det \left(\begin{array}{cc} 2 - \lambda & -1 \\ 5 & -2 - \lambda \end{array} \right)$$
$$= (2 - \lambda) (-2 - \lambda) - (-1) (5)$$
$$= \lambda^{2} + 1$$

and so the eigenvalues are $\lambda = -i \& \lambda = i$. (This example illustrates that a matrix with real entries may have complex eigenvalues.) To find the eigenspace corresponding to $\lambda = -i$ we must solve

$$\begin{pmatrix} 2 & -(-i) & -1 \\ 5 & -2 & -(-i) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

As always, we set up an appropriate augmented matrix and row reduce:

$$\begin{pmatrix} 2 + i & -1 & | & 0 \\ 5 & -2 + i & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{2}{5} + \frac{i}{5} & | & 0 \\ 5 & -2 + i & | & 0 \end{pmatrix}$$

Recall:
$$\frac{-1}{2+i} = \frac{(-1)(2-i)}{(2+i)(2-i)} = \frac{-2+i}{2^2-(-1)} = -\frac{2}{5} + \frac{i}{5}$$

 $\sim \begin{pmatrix} 1 & -\frac{2}{5} + \frac{i}{5} & | & 0\\ 0 & 0 & | & 0 \end{pmatrix}$

Hence, $x_1 = \left(\frac{2}{5} - \frac{i}{5}\right) x_2$ and so $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = t \begin{pmatrix} 2 - i \\ 5 \end{pmatrix}$ for all scalars t.

To find the eigenspace corresponding to $\lambda = i$ we must solve

$$\begin{pmatrix} 2 - (i) & -1 \\ 5 & -2 - (i) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

We again set up an appropriate augmented matrix and row reduce:

$$\begin{pmatrix} 2 - i & -1 & | & 0 \\ 5 & -2 - i & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{2}{5} - \frac{i}{5} & | & 0 \\ 5 & -2 - i & | & 0 \end{pmatrix} \\ \sim \begin{pmatrix} 1 & -\frac{2}{5} - \frac{i}{5} & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Hence,
$$x_1 = \left(\frac{2}{5} + \frac{i}{5}\right) x_2$$
 and so $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = t \begin{pmatrix} 2 + i \\ 5 \end{pmatrix}$ for all scalars t .

Note: Again, we have two distinct eigenvalues with linearly independent eigenvectors. We also see that $\begin{vmatrix} 2 & -1 \\ 5 & -2 \end{vmatrix} = (-i)(i) = 1$

Fact: Let A be an $n \times n$ matrix with real entries. If λ is an eigenvalue of A with associated eigenvector v, then $\overline{\lambda}$ is also an eigenvalue of A with associated eigenvector \overline{v} .

3. Find the eigenvalues and the corresponding eigenspaces of the 3×3 matrix $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$.

Solution

Here

$$Det (A - \lambda I_n) = Det \begin{pmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{pmatrix}$$
$$= (5 - \lambda) \begin{vmatrix} 5 - \lambda & 2 \\ 2 & 2 - \lambda \end{vmatrix}$$
$$- 4 \begin{vmatrix} 4 & 2 \\ 2 & 2 - \lambda \end{vmatrix}$$
$$+ 2 \begin{vmatrix} 4 & 5 - \lambda \\ 2 & 2 \end{vmatrix}$$
$$= (5 - \lambda) ((5 - \lambda) (2 - \lambda) - (2)(2))$$
$$- 4 (4 (2 - \lambda) - (2)(2))$$
$$+ 2 ((4)(2) - (5 - \lambda)(2))$$
$$+ 2 ((4)(2) - (5 - \lambda)(2))$$
$$= -\lambda^3 + 12\lambda^2 - 21\lambda + 10$$
$$= - (\lambda - 1)^2 (\lambda - 10)$$

Recall: Rational Root Theorem

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 (a_n \neq 0)$ be a polynomial of degree *n* with integer coefficients. If *r* and *s* are relatively prime and $p\left(\frac{r}{s}\right) = 0$, then

 $r \mid a_0$ and $s \mid a_n$.

For $\lambda = 1$, we obtain

$$\left(\boldsymbol{A} - (1) \boldsymbol{I}_{3}\right) \boldsymbol{x} = \boldsymbol{0}_{3 \times 1}$$

or

$$\begin{pmatrix} 5 & -1 & 4 & 2 \\ 4 & 5 & -1 & 2 \\ 2 & 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0_{3 \times 1}$$

or

$$\begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0_{3 \times 1}$$

or

$$\begin{pmatrix} 2 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0_{3 \times 1}.$$

So, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -s - \frac{1}{2}t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}$ and the eigenspace corresponding to

$$\lambda = 1$$
 is given by $\left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \right)$.

For $\lambda = 10$, we obtain

$$\left(\boldsymbol{A} - (10) \boldsymbol{I}_{3}\right) \boldsymbol{x} = \boldsymbol{0}_{3 \times 1}$$

or

$$\begin{pmatrix} 5 & -10 & 4 & 2 \\ 4 & 5 & -10 & 2 \\ 2 & 2 & 2 & -10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0_{3 \times 1}$$

or

$$\begin{pmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0_{3 \times 1}.$$

Hence,

$$\begin{pmatrix} -5 & 4 & 2 & | & 0 \\ 4 & -5 & 2 & | & 0 \\ 2 & 2 & -8 & | & 0 \end{pmatrix} \sim \dots$$

	(1	0	-2	0)
~	0	1	-2	0
	(0	0	0	0)

and so

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2s \\ 2s \\ s \end{pmatrix} = s \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$
 The eigenspace corresponding to $\lambda = 10$ is given by $\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$.

Note: Here we have two distinct eigenvalues with three linearly independent eigenvectors. We

see that
$$\begin{vmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{vmatrix} = (1)(1)(10) = 10.$$

Examples (details left to the student)

1. Find the eigenvalues and corresponding eigenspaces for
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$$
.

Solution

Here

$$\begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & -3 & 3 & -\lambda \end{vmatrix} = -\lambda^3 + 3\lambda^2 - 3\lambda + 1 = -(\lambda - 1)^3.$$

The eigenspace corresponding to the lone eigenvalue $\lambda = 1$ is given by $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Note: Here we have one eigenvalue and one eigenvector. Once again

$$\begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{vmatrix} = (1)(1)(1) = 1.$$

(2	0	1	-3)	
. Find the eigenvalues and the corresponding eigenspaces for	0	2	10	4	
	0	0	2	0	
	0	0	0	3)	

Solution

Here

$$\begin{vmatrix} 2 - \lambda & 0 & 1 & -3 \\ 0 & 2 - \lambda & 10 & 4 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 3 - \lambda \end{vmatrix} = \lambda^4 - 9\lambda^3 + 30\lambda^2 - 44\lambda + 24$$

$$= (\lambda - 2)^3 (\lambda - 3)$$

The eigenspace corresponding to $\lambda = 2$ is given by $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and the eigenspace

corresponding to
$$\lambda = 3$$
 is given by $\begin{pmatrix} -3 \\ 4 \\ 0 \\ 1 \end{pmatrix}$

Note: Here we have two distinct eigenvalues and three linearly independent eigenvectors. Yet

again
$$\begin{vmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 10 & 4 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{vmatrix} = 2^3 (3) = 24.$$

Theorem

.

If A is an $n \times n$ matrix with

$$Det \left(\boldsymbol{A} - \boldsymbol{\lambda} \ \boldsymbol{I}_{\boldsymbol{n}} \right) = \left(\boldsymbol{\lambda} - r_1 \right)^{n_1} \left(\boldsymbol{\lambda} - r_2 \right)^{n_2} \left(\boldsymbol{\lambda} - r_3 \right)^{n_3} \dots \left(\boldsymbol{\lambda} - r_k \right)^{n_k},$$

then

Det
$$A = r_1^{n_1} r_2^{n_2} r_3^{n_3} \dots r_k^{n_k}$$
.

	2	0	1	-3	
We note that in the above example the eigenvalues for the matrix	0	2 10 4	oro		
	0	0	2	0	are
	0	0	0	3	

(formally) 2, 2, 2, and 3, the elements along the main diagonal. This is no accident.

Theorem

If A is an $n \times n$ upper (or lower) triangular matrix, the eigenvalues are the entries on its main diagonal.

Definition

Let A be an $n \times n$ matrix and let

$$Det \left(\boldsymbol{A} - \boldsymbol{\lambda} \ \boldsymbol{I}_{n} \right) = \left(\boldsymbol{\lambda} - \boldsymbol{r}_{1} \right)^{n_{1}} \left(\boldsymbol{\lambda} - \boldsymbol{r}_{2} \right)^{n_{2}} \left(\boldsymbol{\lambda} - \boldsymbol{r}_{3} \right)^{n_{3}} \dots \left(\boldsymbol{\lambda} - \boldsymbol{r}_{k} \right)^{n_{k}}.$$

- (1) The numbers $n_1, n_2, n_3, ..., n_k$ are the *algebraic multiplicities* of the eigenvalues $r_1, r_2, r_3, ..., r_k$, respectively.
- (2) The *geometric multiplicity* of the eigenvalue r_j (j = 1, 2, 3, ..., k) is the dimension of the null space $A r_j I_n$ (j = 1, 2, 3, ..., k).

Example

1. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the

$$2 \times 2$$
 matrix $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$:

Eigenvalue	Algebraic	Geometric		
	Multiplicity	Multiplicity		
0	1	1		
4	1	1		

2. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the

 3×3 matrix $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$:

Eigenvalue	Algebraic	Geometric		
	Multiplicity	Multiplicity		
1	2	2		
10	1	1		

3. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the

$$3 \times 3$$
 matrix $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$:

Eigenvalue	Algebraic	Geometric
	Multiplicity	Multiplicity
1	3	1

4. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the

	2	0	1	-3	
1 × 1 matrix	0	2	10	4	
4 ^ 4 maurix	0	0	2	0	•
	0	0	0	3))

Eigenvalue	Algebraic	Geometric		
	Multiplicity	Multiplicity		
2	3	2		
3	1	1		

The above examples suggest the following theorem:

Theorem

Let A be an $n \times n$ matrix with eigenvalue λ . Then the geometric multiplicity of λ is less than or equal to the algebra multiplicity of λ .