
Eigenvalues & Eigenvectors

Example

Suppose  .  Then  .  So, geometrically,

multiplying a vector in   by the matrix  A  results in a vector which is a reflection of the given

vector about the y-axis.

                                    

We observe that  

and

.

Thus, vectors on the coordinate axes get mapped to vectors on the same coordinate axis.  That is,



for vectors on the coordinate axes we see that   and   are parallel or, equivalently,

for vectors on the coordinate axes there exists a scalar   so that  .  In

particular,   for vectors on the x-axis and   for vectors on the y-axis.  Given the

geometric properties of   we see that   has solutions only

when   is on one of the coordinate axes.

Definition

Let  A  be an   matrix.  We call a scalar   an eigenvalue of  A  provided there exists a

nonzero n-vector  x  so that  .  In this case, we call the n-vector  x  an eigenvector of

A corresponding to  .

We note that    is true for all    in the case that   and, hence, is not

particularly  interesting.  We do allow for the possibility that  .

Eigenvalues are also called proper values (“eigen” is German for the word “own” or “proper”)

or characteristic values or latent values.  Eigenvalues were initial used by Leonhard Euler in

1743 in connection with the solution to an   order linear differential equation with constant

coefficients.

Geometrically, the equation    implies that the n-vectors   are parallel.



Example

Suppose  .  Then   is an eigenvector for A corresponding to the eigenvalue

of    as

.

In fact, by direct computation, any vector of the form   is an eigenvector for A

corresponding to  .  We also see that   is an eigenvector for A corresponding to the

eigenvalue  since

.

Suppose  A  is an   matrix and    is a eigenvalue of  A.  If  x  is an eigenvector of A

corresponding to    and  k  is any scalar, then

.

So, any scalar multiple of an eigenvector is also an eigenvector for the given eigenvalue  . 

Now,  if    are both eigenvectors of  A  corresponding to  , then

.

Thus,  the set of all eigenvectors of A corresponding to given eigenvalue    is closed under

scalar multiplication and vector addition.  This proves the following result:



Theorem

If  A  is an    matrix and    is a eigenvalue of  A, then the set of all eigenvectors of  ,

together with the zero vector, forms a subspace of  .  We call this subspace the eigenspace of

.

Example

Find the eigenvalues and the corresponding eigenspaces for the matrix  .

Solution

We first seek all scalars    so that  :

.

The above has nontrivial solutions precisely when   is singular.   That is, 

the above matrix equation has nontrivial solutions when



Thus,  the eigenvalues for   are  .  Since

implies

,

the eigenspace of   corresponding to   is the null space of

.

Because

~

we see that the null space of   is given by  .  In a similar manner,  the

eigenspace for   is the null space of   which is



given by  .

Finding Eigenvalues:

Let  A  be an  matrix.  Then

Y

Y

Y .

It follows that  

  is an eigenvalue of  A  if and only if   

if and only if  .

Theorem

Let  A  be an  matrix.  Then    is an eigenvalue of  A  if and only if 

.  Further,   is a polynomial in    of degree  n 

called the characteristic polynomial of  A.  We call    the characteristic

equation of  A.



Examples

1.   Find the eigenvalues and the corresponding eigenspaces of the   matrix  .

Solution

Here  

and so the eigenvalues are  .  The eigenspace corresponding to    is

just the null space of the given matrix    which is  .  The eigenspace

corresponding to    is the null space of   which is  .

Note:  Here we have two distinct eigenvalues and two linearly independent eigenvectors (as 

 is not a multiple of  ).  We also see that  .

 



2.  Find the eigenvalues and the corresponding eigenspaces of the   matrix  .

Solution

Here  

and so the eigenvalues are  .  (This example illustrates that a matrix with

real entries may have complex eigenvalues.)  To find the eigenspace corresponding to  

we must solve 

.

As always, we set up an appropriate augmented matrix and row reduce:

~  

Recall:  

~ 

Hence,   and so   for all scalars  t.



To find the eigenspace corresponding to   we must solve 

.

We again set up an appropriate augmented matrix and row reduce:

~

~ 

Hence,   and so   for all scalars  t.

Note:  Again, we have two distinct eigenvalues with linearly independent eigenvectors.  We also

see that  

Fact:  Let  A  be an    matrix with real entries.  If    is an eigenvalue of  A  with

associated eigenvector  v, then    is also an eigenvalue of  A  with associated eigenvector  .



3.  Find the eigenvalues and the corresponding eigenspaces of the   matrix  .

Solution

Here  

Recall: Rational Root Theorem

Let   be a polynomial of

degree n with integer coefficients.  If  r  and  s  are relatively prime and  , then 

 and  .



For  , we obtain

or

or 

or

.

So,   and the eigenspace corresponding to

 is given by  .



For  , we obtain

or

or 

.

Hence,

~ ...

~ 

and so

.  The eigenspace corresponding to   is given by  .



Note:  Here we have two distinct eigenvalues with three linearly independent eigenvectors.  We

see that  .

Examples (details left to the student)

1.  Find the eigenvalues and corresponding eigenspaces for  .

Solution

Here

.

The eigenspace corresponding to the lone eigenvalue   is given by  .

Note:  Here we have one eigenvalue and one eigenvector.  Once again 

.



2.  Find the eigenvalues and the corresponding eigenspaces for  .

Solution

Here

The eigenspace corresponding to   is given by   and the eigenspace

corresponding to   is given by  .



Note:  Here we have two distinct eigenvalues and three linearly independent eigenvectors.  Yet

again  .

Theorem

If  A  is an   matrix with 

,

then

.

We note that in the above example the eigenvalues for the matrix   are

(formally)  2, 2, 2, and 3, the elements along the main diagonal.  This is no accident.

Theorem

If  A  is an   upper (or lower) triangular matrix, the eigenvalues are the entries on its main

diagonal.



Definition

Let  A  be an  matrix and let  

.

(1)  The numbers   are the algebraic multiplicities of the eigenvalues 

, respectively.

(2) The geometric multiplicity of the eigenvalue   is the dimension

of the null space  .

Example

1. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the 

 matrix  :

Eigenvalue Algebraic

Multiplicity

Geometric

Multiplicity

0 1 1

4 1 1

2. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the 

 matrix  :

Eigenvalue Algebraic

Multiplicity

Geometric

Multiplicity

1 2 2

10 1 1



3. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the 

 matrix  :

Eigenvalue Algebraic

Multiplicity

Geometric

Multiplicity

1 3 1

4. The table below gives the algebraic and geometric multiplicity for each eigenvalue of the 

 matrix  :

Eigenvalue Algebraic

Multiplicity

Geometric

Multiplicity

2 3 2

3 1 1

The above examples suggest the following theorem: 

Theorem

Let  A  be an  matrix with eigenvalue  .  Then the geometric multiplicity of   is less

than or equal to the algebra multiplicity of  .


