
THuL THvL
THu + vL=THuL + THvL

TH−2uL = −2THuL

7 - Linear Transformations
Mathematics has as its objects of study sets with various structures.  These sets include sets of

numbers (such as the integers, rationals, reals, and complexes) whose structure (at least from an

algebraic point of view) arise from the operations of addition and multiplication with their

relevant properties.  Metric spaces consist of sets of points whose structure comes from a

distance function.  Various sets of functions with certain properties make up other objects with

their structure coming from the operation of composition.  In linear algebra the objects are sets

of vectors with the operations of addition and scalar multiplication providing the structure.  In

every instance the most interesting and useful functions between these sets are those that

preserve the structure-whether that is preserving distance, closeness, sums or products.  In linear

algebra we call these functions or maps linear transformations.

Definition

Let V and W be vector spaces over the real numbers.  Suppose that T is a function from V to W,

T:V 6 W.  T is linear (or a linear transformation) provided that T preserves vector addition

and scalar multiplication, i.e. for all vectors u and v in V, T(u + v) = T(u) + T(v) and for any

scalar c we have T(cv) = cT(v).

The picture above illustrates a linear transformation T:Rn 6 Rn.  If we assume that T is defined on



the vectors u and v (where it could be chosen without restriction), then its linearity forces T(-2u)

and T(u + v) to be as shown.

Examples

1. Define T: R4 6 R2 by T(a, b, c, d) = (a + 3c, b - c + 2d).  Then T is a linear transformation

for let v1 = (a1, b1, c1, d1) and v2 = (a2, b2, c2, d2) be vectors in R4.

       T(v1 + v2) = T(a1 + a2, b1 + b2, c1 + c2, d1 + d2) 

= ((a1 + a2) + 3(c1 + c2), (b1 + b2) - (c1 + c2) + 2(d1 + d2))

= (a1 + 3c1, b1 - c1 + 2d1) + (a2 + 3c2, b2 - c2 + 2d2)

= T(v1) + T(v2)

Thus, T preserves addition.

Also, if v = (a, b, c, d) and k is any scalar, then

T(kv) = T(ka, kb, kc, kd) = (ka + 3(kc), kb - kc + 2(kd)) = k (a + 3c, b - c + 2d) = kT(v)

Hence, T preserves scalar multiplication and so is linear.

2. Define S: R2 6 R4 by S(x, y) = (0, x, x, y).  For any vectors (x, y) and (s, t) and any scalar

c: S((x, y) + (s, t)) = S(x + s, y + t) 

  = (0, x + s, x + s, y + t) 

  = (0, x, x, y) + (0, s, s, t) 

  = S(x, y) + S(s, t)

and   S(c(x, y)) = S(cx, cy) = (0, cx, cx, cy) = c (0, x, x, y) = c S(x, y).

Therefore, S is a linear transformation.

3. Set T(x, y, z) = (x2, y + 3).  Show that T is not linear.  T does not preserve addition since

      T((1, 0, 0) + (1, 0, 0)) = T(2, 0, 0) = (4, 3) 

yet T(1, 0, 0) + T(1, 0, 0) = (1, 3) + (1, 3) = (2, 6).

This is sufficient to show that T is not linear, but we also show that T does not preserve

scalar multiplication.  Indeed, T(2(0, 0, 0)) = T(0, 0, 0) = (0, 3) … (0, 6) = 2T(0, 0, 0).

4. An example of a linear transformation between polynomial vector spaces is D:P4 6 P3 given



by D(ax4 + bx3 + cx2 + dx + e) = 4ax3 + 3bx2 + 2cx + d.

5. The map T: M2×2 6 P3 defined by T = ax3 + bx2 + cx + d is a linear transformation.
a b
c d









6. Consider S: P3 6 R2 given by S(p(x)) = (p(1), p(2)) where p(x) is any vector in P3 (and so any

polynomial of degree 3 or less.)  Is S linear?

7. Let v be some fixed vector in Rn, say for example v = (1, 2, 3, 1, 2, 3, ...).  Define a map, T:

Rn 6 R by using the dot product setting T(x) = x · v.  T is a linear transformation.

Linear transformations are defined as functions between vector spaces which preserve addition and

multiplication.  This is sufficient to insure that they preserve additional aspects of the spaces as well

as the result below shows.

Theorem

Suppose that T: V 6 W is a linear transformation and denote the zeros of V and W by 0v and 0w,

respectively.  Then T(0v) = 0w.

Proof

Since 0w + T(0v) = T(0v) = T(0v + 0v) = T(0v) + T(0v), the result follows by cancellation.

This property can be used to prove that a function is not a linear transformation.  Note that in

example 3 above T(0) = (0, 3) … 0 which is sufficient to prove that T is not linear.  The fact that a

function may send 0 to 0 is not enough to guarantee that it is linear.    Defining S(x, y) = (xy, 0) we

get that S(0) = 0, yet S is not linear.

Definitions

Suppose that T: V 6 W is a linear transformation.



1. The kernel of T is defined by ker T = {v | T(v) = 0}.

2. The range of T = {T(v) | v is in V}. 

Theorem

Let T: V 6 W be a linear transformation.  Then

1. Ker T is a subspace of V and

2. Range T is a subspace of W.

Proof

1. The kernel of T is not empty since 0 is in ker T by the previous theorem.  Suppose that u and

v are in ker T so that T(u) = 0 and T(v) = 0.  Then T(u + v) = T(u) + T(v) = 0 + 0 = 0.  Thus,

u + v is in ker T. If, in addition, c is any scalar, we have T(cv) = cT(v) = c0 = 0.  Hence, cv

is in ker T which, therefore, is a subspace of V.

2. Since 0 is in V, T(0) is in the range of T which is not empty.  Suppose that w1 and w2 are in

range T.  Then there exist vectors v1 and v2 in V with T(v1) = w1 and T(v2) = w2.  We then

have v1 + v2 is a vector in V and T(v1 + v2) = T(v1) + T(v2) = w1 + w2, i.e.  w1 + w2 is in range

T.  Also if w is in range T, say with v in V and T(v) = w, and c is any scalar, then cv is in V

and T(cv) = cT(v) = cw which shows that cw is in range T.  Consequently, range T is a

subspace of W.

Examples

1. Consider the linear transformation T(x, y, z) = (x - 3y + 5z, -4x + 12y, 2x - 6y + 8z).  To

compute the kernel of T we solve T(x, y, z) = 0.  This corresponds to the homogeneous

system of linear equations

   x  -   3y + 5z = 0

-4x + 12y         = 0

 2x  -   6y + 8z = 0

So we reduce the coefficient matrix  to get .

1 3 5
4 12 0

2 6 8

−
−

−















1 3 0
0 0 1
0 0 0

−















Hence ker T = {(x, y, z) | x = 3y and z = 0} = < (3, 1, 0) >.

Range T = {T(x, y, z) | (x, y, z) is in R3} 

  = {(x - 3y + 5z, -4x + 12y, 2x - 6y + 8z)| x, y, and z are real numbers} 

 = {x(1, -4, 2) + y(-3, 12, -6) + z(5, 0, 8)| x, y, and z are real numbers} 

  = < (1, -4, 2), (5, 0, 8) >.

2. Let S: R3 6M2×2 be given by S(x, y, z) = .  Then S is linear and it is easy o see that
x z
y 0









ker S = {(0, 0, 0)} and range S = .
1 0
0 0

0 1
0 0

0 0
1 0























, ,

For any function f: X 6 Y, f is said to be one-to-one if f(a) = f(b) implies that a = b (no two elements

of the domain of f map to the same element of Y.)  For any linear transformation there is a

straightforward method of determining whether or not it is one-to-one.  It is an important reason why

we are interested in kernels.

Theorem

Suppose that T: V 6 W is a linear transformation.  T is one-to-one if and only if ker T = {0}.

Proof

Suppose that ker T = {0}.  Let a and b be vectors in V with T(a) = T(b).  Then T(a - b) = 

T(a) - T(b) = 0.  Thus, a - b is in the kernel of T, so a - b = 0.  Hence, a = b which shows that T is

one-to-one.

Conversely, suppose that ker T … {0} say v is in ker T and v … 0.  We then have T(v) = 0 = T(0) yet

v … 0. Hence, T is not one-to-one.  So if T is one-to-one, ker T = { 0}.

We have seen that matrix multiplication distributes over addition (so, when the addends are column

vectors, A(x + y) = Ax + Ay) and that scalars can be factored out of products (A(cx) = c(Ax)).  We

have also defined the null space of A as the set of vectors x for which Ax = 0 and seen that the

column space of A is the set of all vectors for which there is a solution to Ax = b, i.e. all vectors b



such that there exists a vector x with Ax = b.  Thus we have the following 

Theorem.

Let A be an m×n matrix.  Define T:Rn 6 Rm by, for any x in Rn, T(x) = Ax.  Then T is a linear

transformation.  Furthermore, the kernel of T is the null space of A and the range of T is the column

space of A.

Thus matrix multiplication provides a wealth of examples of linear transformations between real

vector spaces.  In fact, every linear transformation (between finite dimensional vector spaces) can

be thought of as matrix multiplication.  We will see this shortly, but first a little ground work.

Suppose that B = {v1, v2, ..., vn} is a basis for the vector space V and v is any vector in V.  By the

unique representation theorem, v = c1v1 + c2v2 + ... + cnvn where the scalars c1, c2, ..., cn are uniquely

determined.

Definition

The coordinate vector of v with respect to the basis B, vB, is defined by setting

vB = .

c
c

cn

1

2



















Example

Let v = (50, -36, 134 ) and consider the bases B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and BN = {(2,

-3, 5), (1, 4, -7), (6, 0, 9)} of R3.  We have



vB =    and vBN =  

50
36

134
−















4
6

8
−















(The latter since (50, -36, 134) = 4(2, -3, 5) - 6(1, 4, -7) + 8(6, 0, 9).)

Definition

Let V and W be vector spaces.  V and W are isomorphic if there is a linear transformation 

T:V 6 W which is one-to-one and onto (i.e. range T = W) in which case T is called an isomorphism.

Vector spaces which are isomorphic have the same number of vectors and corresponding vectors

in the two vector spaces behave in precisely the same way.  The spaces have the same structure; they

differ only in notation or name (as vector spaces.)  The following theorem justifies the special

attention accorded Rn.

Theorem

Suppose that V is a vector space with dim V = n.  Then V is isomorphic to Rn.

Proof

Let B = {v1, v2, ..., vn} be a basis for V.  Define IB: V 6 Rn as follows.  For any v in V let c1, c2, ...,

cn be scalars so that v = c1v1 + c2v2 + ... + cnvn.  Set IB(v) = (c1, c2, ..., cn).  Then IB is an isomorphism.

Notice that, in essence, IB(v) = vB.

Examples

1. Pn is isomorphic to Rn+1 by, e.g. T(anxn + an-1xn-1 + ... + a1x + a0) = (an, an-1, ..., a1, a0).

2. Mm×n is isomorphic to Rn by defining, for A = (aij), S(A) = (a11, a12, ..., a1n, a21, a22, ..., ann).

Any linear transformation is determined by its effect on any basis of its domain.  For suppose that

T: V 6 W is linear and that B = {v1, v2, . . . , vn} is a basis for V.  For any vector v in V there are

scalars ci so that v = c1v1 + c2v2 + . . . + cnvn.  But then T(v) = c1T(v1) + c2T(v2) + . . . + cnT(vn). 



So once the images of the basis elements vi are fixed, the vectors T(vi), the image of an arbitrary

vector v, T(v), is forced.  Now let BN = {w1, w2, ..., wn} be a basis for W.  For each j = 1, 2, ..., n

write T(vj) = a wkj k
k

m

=
∑

1

Theorem

Suppose that V and W are vector spaces with bases B and BN, respectively.  Given any linear

transformation T: V 6 W set matrix A = (aij) where each aij is defined as the scalar above.  Then for

any v in V, T(v)BN = AvB, i.e. the coordinate vector of T(v) with respect to the basis BN is just the

product of the coordinate vector of v with respect to the basis B times A.  The matrix A is called the

matrix representation of T with respect to (w.r.t.) the bases B and BN.

Example

Define T:P2 6 M2×2 by T(ax2 + bx + c) = .  Using the bases 
a b b c
a c a
+ −
+









2
3 4 5

B = {x2 + 1, x + 2, x2+ x} and BN = 
1 1
1 1

1 1
1 0

1 0
1 0

1 0
0 0









































, , ,

we compute a, the matrix of T w.r.t. B and BN.  First we calculate the image of each element of B

under T.

T(x2 + 1) = T(x + 2) = T(x2 + x) = 
1 1
7 5

−







2 1
8 0

−







3 1
3 5









Next the coordinate vectors of each of these w.r.t. BN are calculated.

T(x2 + 1) BN = T(x + 2)BN = T(x2 + x) BN = 

5
6

8
6

−

−



















0
1

9
6

−

−



















5
4

2
0

−




















The first vector is correct since = .
1 1
7 5

−





 5

1 1
1 1

6
1 1
1 0

8
1 0
1 0

6
1 0
0 0







 −







 +







 −









Then we have A = . 

5
6

8
6

0
1

9
6

5
4

2
0

−

−

−

−

−


















We illustrate the results of the theorem with v = 4x2 - 2x + 10.

vB =  since v = 4x2 - 2x + 10.= .

22 3
4 3
10 3

/
/

/−















22
3

1 4
3

2 10
3

2 2( ) ( ) ( )x x x x+ + + − +

Then AvB = .  Comparing we have T(v) =  Then, since 

20
32

64
52

−

−



















0 12
52 20

−







 , we have T(v)BN = =  AvB as claimed.20
1 1
1 1

32
1 1
1 0

64
1 0
1 0

52
1 0
0 0







 −







 +







 −









20
32

64
52

−

−



















Special Case.

Consider bases B1 and B2 of Rn.  Let I : Rn 6 Rn be the identity map, i.e. I(v) = v for every vector

v, The matrix representation of I w.r.t. B1 and B2 (call it A) provides a change of basis.  If a vector



v is expressed in terms of B1 as , then A is v in terms of. the basis B2, the coordinate vectorvB1
vB1

of v w.r.t. B2.

Using the isomorphisms introduced in the previous theorem we could express the results of the

theorem above as IBN B T = A B IB or T = IBN
-1 B A B IB.   Not only do linear transformation correspond

to multiplying vectors by matrices, but the composition of linear transformations amounts to matrix

multiplication.

Theorem

Suppose that U, V, and W are vector spaces with bases B, BN, and BO, respectively.  Suppose that

S:U 6 V and T:V 6 W are linear transformations with the matrix representation of S w.r.t. B and BN

being C and the matrix representation of T w.r.t. BN and BO the matrix A.  Then the composition SBT

has as its matrix representation w.r.t. B and BO, the matrix product CA.

Now consider a linear transformation T:Rn 6 Rn.  Let A be the matrix representation of T w.r.t the

standard basis of Rn.  Suppose that λ is an eigenvalue of A with eigenvector x.  Then Ax = λx = T(x)

so T sends x to a scalar multiple of itself In fact, the space generated by x (a subspace of the

eigenspace of λ) is mapped into itself by T.


