
Matrix Inverses

Consider the ordinary algebraic equation   and its solution shown below:

Since the linear system

can be written as

where

,  , and ,

(A = coefficient matrix, x = variable vector, b = constant vector)  it is reasonable to ask if the matrix

equation   corresponding to above system of n linear equation in n variables can be solved

for   in a manner similar to the way the ordinary algebraic equation   is solved for x.  



That is, is it possible to solve   for the vector   as follows:

Recall that   is a   identity matrix with  .  For all matrix products that are

defined,   and  .

The above scheme for solving the matrix equation   for the vector   depends on

our ability to find a matrix   so that the product of   with the coefficient matrix   is the identity

matrix  .

Example

1. Find a matrix  , if possible, so that  .

Solution

The equation  

after matrix multiplication on the left becomes

.

By matrix equality, we obtain the system



which has solutions of  .

As a check, direct computation shows that

.

We also observe that

.

2. Find a matrix  , if possible, so that  .

Solution

Here

becomes

and the resulting system of linear equations is given by

We quickly see that this particular system is dependent.



The point:  Even for   matrices it is not always possible to solve the matrix equation

 for the solution vector x as it is not always possible to find matrices B so that  .

Definition

An   square matrix A is invertible (or nonsingular) if there exists an   matrix B such

that

.

In this case, we call the matrix B an inverse for A.  A matrix that does not have an inverse is said

to be noninvertible or singular.

Problem

What is the problem with the equation   if  A is an   matrix with  ?  Can

a nonsquare matrix have an inverse in the sense of the above definition?

Examples

1.  As seen above,  the matrices   are inverses.

2.  Also as seen above, the matrix   is singular. 

3. The matrix   is invertible or nonsingular.  An inverse can be shown to be

the   matrix  .  As a cheap check on this statement we note that



in the product of the above two matrices that

  

and 

 .

Example

Show that if  , then  .

Solution

(The other product also yields the   identity matrix  .)  The quantity   is called the

determinant of the matrix   and is denoted by  .

We note that  .  



Theorem

If  A is an   nonsingular matrix, then  A has exactly one inverse.

Proof

Suppose that  B and  C are matrix inverses of  A.  Then, by definition,

and

.

Now,

Y 

Y 

Y

Y .  >

Since an invertible square matrix  A has a unique inverse, we will denote it by  .  

Theorem

If  A is a nonsingular matrix, then the unique solution to the equation   is given by

.

Proof

We first show that   solves the equation  .  To this end we observe that

Y Y  Y  

Thus,   is a solution of .

Now, we suppose that the vector  y also solves  .  Then

 Y 

Y 



Y 

Y .  >

Theorem

Suppose that  A and  B are nonsingular matrices.  Then  AB is nonsingular and

.

To see that the above is true one only need simplify the two products

obtaining the identity matrix in each case.  The above may be generalized via mathematical

induction in a natural manner.

Example

1. The matrix equation   has a unique solution for any scalars

 given by

.

2. The linear system

has a unique solution for all scalars   given by



.

In practice, one typically doesn’t solve the matrix equation  (or, equivalently, linear

systems) by computing the inverse matrix of  A and forming the unique solution  .  The

existence of the inverse matrix   for a square matrix A does have theoretical value as shown by

the next theorem. 

Theorem

Suppose  A is an   matrix.  Then the following are equivalent:

1. A is invertible.

2. A is row-equivalent to the   identity matrix  .  (That is, it is possible to transform the

matrix  A into   using the elementary row operations of (i) multiply (or divide) one row

by a nonzero number, (ii) add a multiple of one row to another row, and (iii) interchange two

rows.)

3. A is the product of elementary matrices.

4. The homogeneous system   has only the trivial solution  .

5. The linear system   has a solution for each   column vector b.



Gauss-Jordan Method for Computing  :

Assume A is an invertible square matrix of size n.

1. Form the augmented matrix  .

2. Use the elementary row operations to reduce the augmented matrix to the form  .

3. Deduce that  .

Examples

1.  Consider the matrix  .  Using the above formula for computing the inverse of a 

matrix

we find that

.

Now, by the Gauss-Jordan Method

~

~

~

~ 



and, again, we see that

.

2.  Consider  

~

~

~

~

~ 

~ 

~ 



We conclude via the Gauss-Jordan method that  .

Example

What if we apply the Gauss-Jordan method to a square matrix without knowing whether the matrix

is in fact invertible?  Well, consider the following sequence of matrices.

~ 

~ 

~ 

The above shows that the matrix   is not row-equivalent to the identity matrix

 (why?) and so, by a theorem above, we conclude that the given matrix is not invertible.

Problem

1. True or false:  If the matrix  A  has a row (or column) of zeros, then  A is not invertible.

2. True or false:  If the matrix  A has a has two rows (or columns) that are proportional, then

A is not invertible.



Problem

Let  .  Show that   and  .  (So what?)


