Orthogonal Complements and Projections

Recall that two vectors $v_1 \& v_2$ in \mathbb{R}^n are *perpendicular* or *orthogonal* provided that their *dot product* vanishes. That is, $v_1 \perp v_2$ if and only if $v_1 \cdot v_2 = 0$.

Example

1. The vectors
$$\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 12 \\ 8 \\ 3 \end{pmatrix}$$
 in \mathbb{R}^3 are orthogonal while $\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ -6 \\ 7 \end{pmatrix}$ are

not.

We can define an *inner product* on the vector space of all polynomials of degree at most
 3 by setting

$$\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx$$

(There is nothing special about integrating over [0,1]; This interval was chosen arbitrarily.) Then, for example,

$$\left\langle 2x^2 + 1, 10x^2 + 11x - 11 \right\rangle = \int_0^1 \left(2x^2 + 1 \right) \left(10x^2 + 11x - 11 \right) dx$$
$$= \int_0^1 \left(20x^4 + 22x^3 - 12x^2 + 11x - 11 \right) dx$$
$$= \left(4x^5 + \frac{11}{2}x^4 - 4x^3 + \frac{11}{2}x^2 - 11x \right) \Big|_0^1$$
$$= 0$$

Hence, relative to the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx$ we have that the

two polynomials $2x^2 + 1 \& 10x^2 + 11x - 11$ are orthogonal in P_3 .

So, more generally, we say that $v_1 \perp v_2$ in a vector space V with inner product $\langle u, v \rangle$ provided

that $\langle u, v \rangle = 0$.

Example

Consider the 3×4 matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 0 & 8 & 2 \end{pmatrix}$. Then, by the elementary row operations,

we have that $rref(A) = \begin{pmatrix} 1 & 0 & 8 & 2 \\ 0 & 1 & -5 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. As discussed in the previous sections, the *row*

space of A coincides with the row space of rref(A). In this case, we see that a basis for

$$\boldsymbol{R}_{\boldsymbol{A}} = \boldsymbol{R}_{\boldsymbol{rref}(\boldsymbol{A})} \text{ is given by } \left\{ \begin{pmatrix} 1\\0\\8\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\-5\\-1 \end{pmatrix} \right\}. \text{ By consideration of } \boldsymbol{rref}(\boldsymbol{A}), \text{ it follows that the } \right\}$$

null space of *A*, *N_A*, has a basis given by
$$\begin{cases} \begin{pmatrix} -8 \\ 5 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$
. We note that, as per the

Fundamental Theorem of Linear Algebra, that $dim(R_A) + dim(N_A) = 4$ (= # of columns of A). Let's consider vectors in $R_A = R_{rref(A)}$ and N_A , say,

$$6\begin{pmatrix}1\\0\\8\\2\end{pmatrix} + (-2)\begin{pmatrix}0\\1\\-5\\-1\end{pmatrix} = \begin{pmatrix}6\\-2\\58\\14\end{pmatrix} \in R_{A}$$

and

$$(-3)\begin{pmatrix} -8\\5\\1\\0 \end{pmatrix} + 4\begin{pmatrix} -2\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 16\\-11\\-3\\4 \end{pmatrix} \in N_{A}$$

By direct computation we see that

$$\begin{pmatrix} 6 \\ -2 \\ 58 \\ 14 \end{pmatrix} \cdot \begin{pmatrix} 16 \\ -11 \\ -3 \\ 4 \end{pmatrix} = 6 (16) + (-2) (-11) + 58 (-3) + 14 (4) = 0$$

and so $\begin{pmatrix} 6 \\ -2 \\ 58 \\ 14 \end{pmatrix} \perp \begin{pmatrix} 16 \\ -11 \\ -3 \\ 4 \end{pmatrix}$.

So, is this an accident that an element of $\mathbf{R}_{A} = \mathbf{R}_{rref(A)}$ is orthogonal to an element of N_{A} ? To answer this let's consider the dot product of arbitrary elements of $\mathbf{R}_{A} = \mathbf{R}_{rref(A)}$ and N_{A} .

Since $\begin{cases} \begin{pmatrix} 1 \\ 0 \\ 8 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -5 \\ -1 \end{pmatrix} \end{cases}$ is a basis for $\mathbf{R}_{A} = \mathbf{R}_{rref(A)}$, there exists scalars a & b so that every

vector in $\mathbf{R}_{\mathbf{A}} = \mathbf{R}_{rref(\mathbf{A})}$ can be written as

$$a \begin{pmatrix} 1 \\ 0 \\ 8 \\ 2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ -5 \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ b \\ 8a - 5b \\ 2a - b \end{pmatrix}.$$

Similarly, since
$$\begin{cases} \begin{pmatrix} -8 \\ 5 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$
 is a basis for N_A , there exists scalars $r \& s$ so that every

vector in N_A can be written as

$$r\begin{pmatrix} -8\\5\\1\\0 \end{pmatrix} + s\begin{pmatrix} -2\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} -8r - 2s\\5r + s\\r\\s \end{pmatrix}$$

Now,

$$\begin{pmatrix} a \\ b \\ 8a - 5b \\ 2a - b \end{pmatrix} \cdot \begin{pmatrix} -8r - 2s \\ 5r + s \\ r \\ s \end{pmatrix} = a(-8r - 2) + b(5r + s) + (8a - 5b)r + (2a - b)s = 0.$$

•

We conclude that if $v \in R_A$ and $w \in N_A$, then $v \cdot w = 0$ and so $v \perp w$.

Definition

Suppose V is a vector space with inner product $\langle u, v \rangle$. (Think $V = \mathbb{R}^n$ and $\langle u, v \rangle = dot(u, v)$)

- 1. The subspaces $S_1 \& S_2$ of \mathbb{R}^n are said to be *orthogonal*, denoted $S_1 \perp S_2$, if $\langle v_1, v_2 \rangle = 0$ for all $v_1 \in S_1 \& v_2 \in S_2$.
- 2. Let W be a subspace of V. Then we define W^{\perp} (read "*W perp*") to be the set of vectors in V given by

$$W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$$

The set W^{\perp} is called the *orthogonal complement* of W.

Examples

		(1	1	3	1	1
1.	From the above work, if $A =$	2	3	1	1	, then $R_A \perp N_A$.
		(1	0	8	2)	

2. Let A be any $m \times n$ matrix. Now, the null space N_A of A consists of those vectors x with $A = 0_m$. However, $A = 0_m$ if and only if $r_i \cdot x = 0$ (i = 1, ..., m) for each row r_i of the matrix A. Hence, the null space of A is the set of all vectors orthogonal to the rows of A and, hence, the row space of A. (Why?) We conclude that $R_A^{\perp} = N_A$.

The above suggest the following method for finding W^{\perp} given a subspace W of \mathbb{R}^{n} .

- 1. Find a matrix *A* having as row vectors a generating set for *W*.
- 2. Find the null space of A. This null space is W^{\perp} .

3. Suppose that
$$S_1 = span \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 and $S_2 = span \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$. Then $S_1 \& S_2$

are *orthogonal* subspaces of \mathbb{R}^5 . To verify this observe that

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} = a r \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b r \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = a r (0) + b r (0)$$

$$= 0$$

Thus,
$$S_1 \perp S_2$$
. Since

$$\left(\begin{array}{c} a \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right) \cdot \begin{pmatrix} -7 \\ -2 \\ 2 \\ 2 \\ 2 \\ 5 \end{pmatrix} = 0$$

and

$$\begin{pmatrix} -7\\ -2\\ 2\\ 2\\ 2\\ 5 \end{pmatrix} \notin S_2,$$

it follows that $S_1^{\perp} \neq S_2$. So, what is the set S_1^{\perp} ? Let $B = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$.

Then, from part 2 above, $S_1^{\perp} = N_B$. In fact, a basis for $S_1^{\perp} = N_B$ can be shown to be

	(1)		$\left(\begin{array}{c} 0 \end{array} \right)$		(0)	
	0		-1		0	
ł	0	,	1	,	0	}
	0		1		0	
l	(0)		(0)		(1)	J

Finally, we note that the set
$$\left\{ \begin{pmatrix} 0\\1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0\\0 \end{pmatrix} \right\} \bigcup \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$
forms a basis

for \mathbb{R}^5 . In particular, every element of \mathbb{R}^5 can be written as the sum of a vector in S_1 and a vector in S_1^{\perp} .

4. Let W be the subspace of P_3 (= the vector space of all polynomials of degree at most 3) with basis $\{1, x^3\}$. We take as our inner product on P_3 the function

$$\langle f(x), g(x) \rangle = \int_0^1 f(x) g(x) dx$$

Find as basis for W^{\perp} .

<u>Solution</u>

Let
$$p(x) = ax^3 + bx^2 + cx + d \in W^{\perp}$$
. Then
 $\langle p(x), g(x) \rangle = \int_0^1 p(x) g(x) dx = 0$

for all $g(x) \in W$. Hence, in particular,

$$\langle p(x), 1 \rangle = \int_0^1 (ax^3 + bx^2 + cx + d) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d = 0$$

and

$$\langle p(x), x^3 \rangle = \int_0^1 (ax^6 + bx^5 + cx^4 + dx^3) dx = \frac{a}{7} + \frac{b}{6} + \frac{c}{5} + \frac{d}{4} = 0.$$

Solving the linear system

$$\frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d = 0$$
$$\frac{a}{7} + \frac{b}{6} + \frac{c}{5} + \frac{d}{4} = 0$$

we find that we have pivot variables of $a = \frac{14}{5}c + 14d$ and $b = -\frac{18}{5}c - \frac{27}{2}d$ with

free variables of c and d. It follows that

$$p(x) = c\left(\frac{14}{5}x^3 - \frac{18}{5}x^2 + x\right) + d\left(14x^3 - \frac{27}{2}x^2 + 1\right)$$

for some $c, d \in \mathbb{R}$. Hence, the polynomials

$$\frac{14}{5}x^3 - \frac{18}{5}x^2 + x \quad \& \quad 14x^3 - \frac{27}{2}x^2 + 1$$

span W^{\perp} . Since these two polynomials are not multiples of each other, they are linearly independent and so they form a basis for W^{\perp} .

Theorem

Suppose that W is a subspace of \mathbb{R}^n .

- 1. W^{\perp} is a subspace of \mathbb{R}^{n} .
- 2. $dim(W^{\perp}) = n dim(W)$

3.
$$(\boldsymbol{W}^{\perp})^{\perp} = \boldsymbol{W}$$

4. Each vector in $\mathbf{b} \in \mathbb{R}^n$ can be expressed uniquely in the form $\mathbf{b} = \mathbf{b}_W + \mathbf{b}_{W^{\perp}}$ where $\mathbf{b}_W \in W$ and $\mathbf{b}_{W^{\perp}} \in W^{\perp}$.

Definition

Let V and W be two subspaces of \mathbb{R}^n . If each vector $x \in \mathbb{R}^n$ can be expressed uniquely in the form x = v + w where $v \in V$ and $w \in W$, the we say \mathbb{R}^n is the *direct sum* of V and Wand we write $\mathbb{R}^n = V \oplus V$.

<u>Example</u>

1.
$$span \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\} \oplus span \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}^{\perp}$$

$$= span \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\} \oplus span \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} = \mathbb{R}^{5}$$

2.
$$span \{x^3, 1\} \oplus span \{x^3, 1\}^{\perp}$$

= $span \{x^3, 1\} \oplus span \{\frac{14}{5}x^3 - \frac{18}{5}x^2 + x, 14x^3 - \frac{27}{2}x^2 + 1\} = P_3$

Fundamental Subspaces of a Matrix

Let A be an $m \times n$ matrix. Then the *four fundamental subspaces* of A are

$$R_{A} = \text{row space of } A \quad \left(= R_{rref(A)} \right)$$
$$N_{A} = \text{null space of } A$$
$$C_{A} = \text{column space of } A \quad \left(= R_{A^{T}} \right)$$
$$N_{A^{T}} = \text{null space of } A^{T}$$

<u>Example</u>

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 3 & 7 \\ 2 & 0 & -4 & -6 \\ 4 & 7 & -1 & 2 \end{pmatrix}$$
. Since $rref(\mathbf{A}) = \begin{pmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, it follows that

$$R_A$$
 has a basis of $\{(1, 0, -2, -3), (0, 1, 1, 2)\}$

and that

$$N_A$$
 has a basis of $\{(3, -2, 0, 1), (2, -1, 1, 0)\}$.

Because
$$rref(A^{T}) = \begin{pmatrix} 1 & 0 & \frac{7}{5} \\ 0 & 1 & \frac{13}{10} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, we have that

$$C_A$$
 has a basis of $\left\{ \begin{pmatrix} 1\\0\\\frac{7}{5} \end{pmatrix}, \begin{pmatrix} 0\\1\\\frac{13}{10} \end{pmatrix} \right\}$

and that

$$N_{A^{T}}$$
 consists of all scalar multiples of the vector $\begin{pmatrix} -\frac{7}{5} \\ -\frac{13}{10} \\ 1 \end{pmatrix}$.

Fundamental Theorem of Linear Algebra - Part II

Let A be an $m \times n$ matrix.

- 1. N_A is the orthogonal complement of R_A in \mathbb{R}^n .
- 2. N_{A^T} is the orthogonal complement of C_A in \mathbb{R}^m .
- 3. $N_A \oplus R_A = \mathbb{R}^n$
- 4. $N_{A^T} \oplus C_A = \mathbb{R}^m$

Example

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 3 & 7 \\ 2 & 0 & -4 & -6 \\ 4 & 7 & -1 & 2 \end{pmatrix}$$
. Write $\mathbf{v} = (12, -10, -14, -26)$ uniquely as the sum of a

vector in R_A and a vector in N_A . It is sufficient to $a, b, c, d \in \mathbb{R}$ so that

$$(a(1,0,-2,-3) + b(0,1,1,2)) + (c(3,-2,0,1) + d(2,-1,1,0)) = v.$$

Reducing the associated augmented matrix

(1	0	3	2		12
0	1	-2	-1		-10
-2	1	0	1		-14
-3	2	1	0	I	-26)

to

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 5 \\ 0 & 1 & 0 & 0 & | & -6 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 2 \end{pmatrix}$$

we see that a = 5, b = -6, c = 1 and d = 2. Set

$$r = 5(1, 0, -2, -3) - 6(0, 1, 1, 2) = (5, -6, -16, -27) \in R_A$$

and

$$s = (3, -2, 0, 1) + 2 (2, -1, 1, 0) = (7, -4, 2, 1) \in N_A$$

Then v = r + s. Why is this the only way to represent v = (12, -10, -14, -26) as a sum of a vector from R_A and a vector from N_A ?

Definition

Let $\boldsymbol{b} \in \mathbb{R}^n$ and let \boldsymbol{W} be a subspace of \mathbb{R}^n . If $\boldsymbol{b} = \boldsymbol{b}_{\boldsymbol{W}} + \boldsymbol{b}_{\boldsymbol{W}^\perp}$ where $\boldsymbol{b}_{\boldsymbol{W}} \in \boldsymbol{W}$ and

 $\boldsymbol{b}_{W^{\perp}} \in W^{\perp}$, then we call \boldsymbol{b}_{W} the *projection* of \boldsymbol{b} onto W and write $\boldsymbol{b}_{W} = proj_{W} \boldsymbol{b}$.

Example

1. Suppose $b = (12, -10, -14, -26) \in \mathbb{R}^4$ and W is the subspace of \mathbb{R}^4 with basis vectors $\{(1, 0, -2, -3), (0, 1, 1, 2)\}$. Then, by the previous example, $proj_W b = (5, -6, -16, -27)$.

2. Find $proj_W \mathbf{b} \in \mathbb{R}^3$ if $\mathbf{b} = (2, 1, 5)$ and $\mathbf{W} = span\{(1, 2, 1), (2, 1, -1)\}$.

Solution

We note that (1, 2, 1) & (2, 1, -1) are linearly independent and, hence, form a basis for W. So, we find a basis for W^{\perp} by finding the null space for

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

or, equivalently,

$$rref\left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 1 & -1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 1 \end{array} \right).$$

We see that $W^{\perp} = \langle (1, -1, 1) \rangle$. We now seek $x_1, x_2, x_3 \in \mathbb{R}$ so that

$$(*) \qquad (2,1,5) = (x_1(1,2,1) + x_2(2,1,-1)) + x_3(1,-1,1).$$

(Of course, $proj_W b = x_1 (1, 2, 1) + x_2 (2, 1, -1)$.)

To solve the equation (*) it is sufficient to row reduce the augmented matrix

(1	2	1	2)	
2	1	-1	1	
(1	-1	1	5)	

obtaining

(1	0	0	2	
0	1	0	-1	
0)	0	1	2)	

Thus, $proj_W b = (2) (1, 2, 1) + (-1) (2, 1, -1) = (0, 3, 3)$. We observe that there exists a matrix **P** given by

$$P = \frac{1}{3} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} = A^{T} (A A^{T})^{-1} A \end{pmatrix}$$

so that

$$P b = proj_W b$$

We call *P* the *projection matrix*. The projection matrix given by $P = A^T (A A^T)^{-1} A$ (where the rows of *A* form a basis for *W*) is expensive computationally but if one is computing several projections onto *W* it may very well be worth the effort as the above formula is valid for all vectors *b*.

3. Find the projection of (1, 2, 1) onto the plane x + y + z = 0 in \mathbb{R}^3 via the projection matrix.

Solution

We seek a set of basis vectors for the plane x + y + z = 0. We claim the two vectors (1, 0, -1) and (2, -1, -1) form a basis. (Any two vectors solving x + y + z = 0 that are not multiples of one another will work.) Set

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$

Then

$$A A^{T} = \begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix}$$

and

$$(A A^{T})^{-1} = \begin{pmatrix} 2 & 3 \\ 3 & 6 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & \frac{2}{3} \end{pmatrix}$$

Hence,

$$P = A^{T} (A A^{T})^{-1} A$$

$$= \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}^{T} \begin{pmatrix} 2 & -1 \\ -1 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

So,

$$\boldsymbol{P} \ \boldsymbol{b} = proj_{W} \ \boldsymbol{b} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

We note that

$$P(P b) = P(proj_{W} b) = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} -1/3 \\ 2/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 2/3 \\ -1/3 \end{pmatrix}$$

and, hence, $P^2 = P$.

Why is this not surprising?

Properties of a Projection Matrix:

- (1) $P^2 = P$ (That is, **P** is *idempotent*.)
- (2) $P^T = P$ (That is, P is symmetric.)