
Orthogonal Complements and Projections

Recall that two vectors   in   are perpendicular or orthogonal provided that their dot

product vanishes.  That is,   if and only if  .

Example

1. The vectors   in   are orthogonal while   are

not.

2. We can define an inner product on the vector space of all polynomials of degree at most

3 by setting

.

(There is nothing special about integrating over [0,1]; This interval was chosen

arbitrarily.)  Then, for example, 

      

Hence,  relative to the inner product   we have that the 

two polynomials   are orthogonal in  .

So, more generally, we say that   in a vector space V with inner product   provided



that  .

Example

Consider the   matrix  .  Then, by the elementary row operations,

we have that  .  As discussed in the previous sections,  the row

space of A coincides with the row space of  .  In this case, we see that a basis for 

 is given by  .  By consideration of  , it follows that the

null space of A, , has a basis given  by  .  We note that, as per the

Fundamental Theorem of Linear Algebra, that           

.

Let’s consider vectors in    and  , say,



and

.

By direct computation we see that 

and so  .

So, is this an accident that an element of   is orthogonal to an element of  ?

To answer this let’s consider the dot product of arbitrary elements of    and  . 

Since   is a basis for  , there exists scalars   so that every

vector in   can be written as



 .

Similarly, since   is a basis for  , there exists scalars   so that every

vector in   can be written as

.

Now,

    .

We conclude that if   and  , then   and so  .

Definition



Suppose V is a vector space with inner product  .  (Think   and 

 )

1. The subspaces   of   are said to be orthogonal, denoted  , if 

 for all  .

2. Let  W be a subspace of  V.  Then we define   (read  “W perp”) to be the set of

vectors in V given by

.

The set   is called the orthogonal complement of W.

Examples

1. From the above work,  if  , then  .

2. Let  A be any   matrix.  Now, the null space   of A consists of those vectors x

with  .  However,   if and only if  

for each row   of the matrix A.  Hence, the null space of A is the set of all vectors

orthogonal to the rows of A and, hence, the row space of A.  (Why?)  We conclude that 

.

The above suggest the following method for finding   given a subspace W of  .

1. Find a matrix A having as row vectors a generating set for W.

2. Find the null space of A.  This null space is  .



3. Suppose that   and  .  Then  

are orthogonal subspaces of  .  To verify this observe that

Thus,  .  Since

and

,



it follows that  .  So, what is the set  ?  Let  .  

Then, from part 2 above,  .  In fact, a basis for   can be shown to be 

.  

Finally, we note that the set   forms a basis 

for  .  In particular, every element of   can be written as the sum of a vector in  

and a vector in  .

4. Let  W be the subspace of    (= the vector space of all polynomials of degree at most 3)

with basis  . We take as our inner product on   the function                               

 .  

Find as basis for  .

Solution

Let  .  Then                                                               

      



for all  .  Hence,  in particular,  

 

and  

.

Solving the linear system

we find that we have pivot variables of   and   with 

free variables of c and d.  It follows that  

for some  .  Hence, the polynomials 

span  .  Since these two polynomials are not multiples of each other, they are linearly 

 independent and so they form a basis for  .



Theorem

Suppose that  W is a subspace of  .

1.  is a subspace of  .

2. 

3. .

4. Each vector in   can be expressed uniquely in the form   where 

 and  .

Definition

Let  V and  W be two subspaces of  .  If each vector   can be expressed uniquely in

the form   where   and  ,  the we say   is the direct sum of V and W

and we write  .

Example

1. 



2. 

Fundamental Subspaces of a Matrix

Let  A be an   matrix.  Then the four fundamental subspaces of A are

 = row space of A  

 = null space of A

 = column space of A  

 = null space of  

Example

Let  .  Since  , it follows that  

  has  a basis of   

and that  

  has a basis of  .

Because  , we have that



  has a basis of  

and that

  consists of all scalar multiples of the vector  .

Fundamental Theorem of Linear Algebra - Part II

Let  A be an   matrix.

1.  is the orthogonal complement of   in  .

2.  is the orthogonal complement of   in  .

3. 

4. 

Example

Let  .  Write   uniquely as the sum of a

vector in   and a vector in  .  It is sufficient to   so that

.

Reducing the associated augmented matrix  



to

we see that a = 5, b = -6, c = 1 and d = 2.

Set  

and

.

Then  .  Why is this the only way to represent   as a sum of

a vector from   and a vector from  ?

Definition

Let   and let W be a subspace of  .  If   where   and 

, then  we call   the projection of b onto  W and write  .

Example

1.   Suppose   and W is the subspace of    with basis vectors

.  Then, by the previous example,  .



2.  Find   if   and  .

Solution

We note that   are linearly independent and, hence, form a basis for W. 

So, we find a basis for   by finding the null space for

or, equivalently, 

.

We see that  .  We now seek   so that

(*) .

( Of course,  .  )

To solve the equation (*) it is sufficient to row reduce the augmented matrix

obtaining

.

Thus,  .  We observe that there exists a

matrix P given by



so that

.

We call P the projection matrix.  The projection matrix given by   (where

the rows of A form a basis for W)  is expensive computationally but if one is computing several

projections onto W it may very well be worth the effort as the above formula is valid for all

vectors b.

3.   Find the projection of   onto the plane   in   via the projection

matrix.

Solution

We seek a set of basis vectors for the plane  .  We claim the two vectors 

 and   form a basis.  (Any two vectors solving   that are

not multiples of one another will work.)  Set

.

Then

and

.



Hence,

So,  

.

We note that

and, hence,  .

Why is this not surprising?

Properties of a Projection Matrix:

(1)   (That is, P is idempotent.)

(2) (That is, P is symmetric.)


