14. CIRCLES ON THE PLANE

Problem 14.1. (HA) Find the center C of the circle passing through points P = (14, 12), Q = (-11, 7) and R = (22, -2).

Hint(s) to 14.1: C is equidistant to all three points.

JERZY DYDAK

Answer to 14.1: (4, -3)

Problem 14.2. Show that each circle on the plane has equation of the form $z \cdot \overline{z} + a \cdot z + b \cdot \overline{z} + c = 0$, where a is the conjugate of b, $b \neq 0$, c is real, and $|a|^2 > c$.

Problem 14.3. Suppose $z \cdot \overline{z} + a \cdot z + b \cdot \overline{z} + c = 0$ is an equation of a circle on the plane. Prove that a is the conjugate of $b, b \neq 0, c$ is real, and $|a|^2 > c$. GEOMETRY AND COMPLEX NUMBERS (April 20, 2004) 21 **Problem 14.4.** (A) The circle centered at $1 + 2 \cdot i$ of radius 3 has equation $z \cdot \overline{z} + a \cdot z + b \cdot \overline{z} + c = 0$, where c is real. Find c.

Answer to 14.4: -4

GEOMETRY AND COMPLEX NUMBERS (April 20, 2004) 23 **Problem 14.5.** Show that a circle and a line intersect at at most 2 points.

Problem 14.6. Let f(z) = z + a, where a is a constant. Show that if C is a circle, then f(C) is a circle, too.

Problem 14.7. Let $f(z) = \overline{z}$. Show that if C is a circle, then f(C) is a circle, too.

Problem 14.8. Let f(z) = 1/z. Show that if *L* is a line not passing through 0, then f(L) is a circle. **Problem 14.9.** Let f(z) = 1/z. Show that if C is a circle not passing through 0, then f(C) is a circle, too.

Problem 14.10. Let f(z) = 1/z. Show that if C is a circle passing through 0, then f(C) is a line.

Problem 14.11. Let $f(z) = a \cdot z + b$, where a and b are constant. Show that if C is a circle, then f(C) is a circle, too. **Problem 14.12.** Let $f(z) = (a \cdot z + b)/(c \cdot z + d)$, where a, b, c, and d are constant so that $ad - bc \neq 0$. Show that if X is a line or a circle, then f(X) is a circle or a line.

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$