4. **Stereographic Projection**

There are two special projections: one onto the x-axis, the other onto the y-axis. Both are well-known. Using those projections one can define functions sine and cosine. However, there is another projection, less known to students, a projection from a circle to the x-axis. It is called the **stereographic projection**. We will use it to provide geometric interpretations of multiplication, division of real numbers, the tangent function, and basic trigonometric formulae.
Problem 4.1. Find the intersection of the line joining \((0, 1)\) and \((1, 3)\) with the \(x\)-axis.
Hint(s) to 4.1: Find an equation of the line passing through the two points. How does one find its intersection with the x-axis?
Outline(s) of solution(s) to 4.1: A non-vertical line is the graph of a linear function $f(x)$. A function $f(x)$ is called \textbf{linear} if the ratio $(f(x_2) - f(x_1))/(x_2 - x_1)$ is always constant if $x_2 \neq x_1$. That ratio is the slope m of the geometric line. One can compute m from the data. Now, setting $x_2 = x$ and $x_1 = 0$ gives $(f(x) - 1)/(x - 0) = m$ as an equation of our line. Its x-intercept is the point such that $f(x) = 0$, so solve $(f(x) - 1)/(x - 0) = m$ in that case.
Answer to 4.1: \(-.5\)
Problem 4.2. Find the intersection of the line joining $(0, 0, 1)$ and $(1, 1, 3)$ with the xy-plane.
Hint(s) to 4.2: Find an equation of the line passing through the two points. How does one find its intersection with the xy-plane?
Outline(s) of solution(s) to 4.2: A non-vertical line on space is the graph of a linear function $f(t)$. A function $f(t)$ is called linear if the ratio $(f(t_2) - f(t_1))/(t_2 - t_1)$ is always constant if $t_2 \neq t_1$. Physically, that constant is the velocity v of a particle traversing our line. One can compute v from the data assuming that at $t = 0$ the particle is at point $(0, 0, 1)$ and at $t = 1$ it is at the other point. Now, setting $t_2 = t$ and $t_1 = 0$ gives $(f(t) - (0, 0, 1))/(t - 0) = v$ as an equation of our line. Its xy-intercept is the point t such that the third coordinate of $f(t)$ equals 0, so solve $(f(t) - (0, 0, 1))/(t - 0) = v$ for such t, then find $f(t)$.
Answer to 4.2: \((-0.5, -0.5)\)
Problem 4.3. Suppose $b \neq 1$. Show that the line joining $(0, 1)$ and (a, b) intersects the x-axis at \(\left(\frac{a}{1-b}, 0 \right) \).
Hint(s) to 4.3: Find an equation of the line passing through the two points. How does one find its intersection with the x-axis?
Outline(s) of solution(s) to 4.3: A non-vertical line is the graph of a linear function \(f(x) \). A function \(f(x) \) is called **linear** if the ratio \((f(x_2) - f(x_1))/(x_2 - x_1) \) is always constant if \(x_2 \neq x_1 \). That ratio is the slope \(m \) of the geometric line. One can compute \(m \) from the data. Now, setting \(x_2 = x \) and \(x_1 = 0 \) gives \((f(x) - 1)/(x - 0) = m \) as an equation of our line. Its \(x \)-intercept is the point such that \(f(x) = 0 \), so solve \((f(x) - 1)/(x - 0) = m \) in that case.
Problem 4.4. Suppose $a \neq 0$ and $b \neq 1$. Show that $\frac{a}{1-b} = \frac{b}{a}$ if (a, b) is on the circle centered at $(0, 1/2)$ with radius $r = 1/2$.
Hint(s) to 4.4: What does it mean that a point \((x, y)\) lies on the circle centered at \((0, 1)\) of radius \(r = 1/2\)? Can you write an equation of that circle? Is it equivalent to \(\frac{x}{1-y} = \frac{y}{x}\) if \(x \neq 0\)?
Outline(s) of solution(s) to 4.4: A point \((x, y)\) lies on the circle centered at \((0, 1)\) of radius \(r = 1/2\) if its distance to \((0, 1)\) is 1/2. Algebraically, it is the same as

\[
x^2 + (y - 1/2)^2 = (1/2)^2.
\]

Expanding and simplifying gives

\[
x^2 + y^2 - y = 0
\]

which is equivalent to \(\frac{x}{1-y} = \frac{y}{x}\) if \(x \neq 0\).
Problem 4.5. Consider the stereographic projection from the North Pole of the circle centered at \((0, 1/2)\) with radius \(r = 1/2\) onto the \(x\)-axis. Show that the image of the point with argument \(\alpha \neq \pi/2\) is \(\tan(\alpha)\).
Hint(s) to 4.5:

1. (Algebraic) If a point \((x, y)\) has argument \(\alpha\), how can \(\tan(\alpha)\) be expressed using \(x\) and \(y\)? How does that compare to the stereographic projection of \((x, y)\)?

2. (Geometric) Draw a picture of the stereographic projection from the North Pole \(N\) via \(A = (x, y)\) to \(B = (t, 0)\). Can you calculate all the angles on the picture? What are their tangents?
Outline(s) of solution(s) to 4.5:

1. (Algebraic) If a point \((x, y)\) has argument \(\alpha\), then \(\tan(\alpha) = \frac{y}{x}\). The stereographic projection of \((x, y)\) is \(\frac{x}{1-y}\) and that equals \(\frac{y}{x} = \tan(\alpha)\) by 4.4.

2. (Geometric) Draw a picture of the stereographic projection from the North Pole \(N\) via \(A = (x, y)\) to \(B = (t, 0)\). If \(\alpha\) is the argument of \(A\), then the angle \(\angle ONB\) equals \(\alpha\). Since \(\tan(\angle ONB) = t\), we are done.
Problem 4.6. Consider the stereographic projection from the North Pole of the circle centered at $(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. Show that one can construct $\frac{-1}{a}$, $a > 0$, by going straight from $(a, 0)$ to $(0, 1)$ and then turning left via 90 degrees and going straight until the x-axis is met again.
Hint(s) to 4.6: Draw a picture of the stereographic projection from the North Pole N via $B = (x, y)$ to $A = (a, 0)$. Then draw a line through N perpendicular to NA. Can you calculate all the angles on the picture? What are their tangents?
Outline(s) of solution(s) to 4.6: Draw a picture of the stereographic projection from the North Pole N via $B = (x, y)$ to $A = (a, 0)$. Then draw a line through N perpendicular to NA. Let t be the x-intercept of that line. If α is the argument of B, then the angle \angleONA equals α and the angle $\angleOCN = \alpha$, where $C = (t, 0)$. Since $\tan(\angleOCN) = -1/t$, we are done.
Problem 4.7. Consider the stereographic projection from the North Pole of the circle centered at $(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. Show that one can construct $\frac{a}{b}$, $a, b > 0$, by going straight from $(a, 0)$ to the y-axis on the line forming the angle $\pi/2 + \beta$ with the x-axis, where b is the projection of the point with argument β.
Hint(s) to 4.7: Draw a picture of the stereographic projection from the North Pole N via $X = (x, y)$ to $B = (b, 0)$. Then draw a line through $A = (a, 0)$ parallel to NB. That line forms the angle $\pi/2 + \beta$ with the x-axis. Can you calculate its y-intercept?
Outline(s) of solution(s) to 4.7: Draw a picture of the stereographic projection from the North Pole \(N \) via \(X = (x, y) \) to \(B = (b, 0) \). Then draw a line through \(A = (a, 0) \) parallel to \(NB \). That line forms the angle \(\pi/2 + \beta \) with the \(x \)-axis. Its \(y \)-intercept equals \(a/b \).
Problem 4.8. Consider the stereographic projection from the North Pole of the circle centered at
$(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. Show that one can construct $a \cdot b$, $a, b > 0$,
by going straight from $(0, a)$ to the x-axis on the line forming the angle $\pi - \beta$ with the y-
axis, where b is the projection of the point with argument β.
Hint(s) to 4.8: Draw a picture of the stereographic projection from the North Pole N via $X = (x, y)$ to $B = (b, 0)$. Then draw a line through $A = (0, a)$ parallel to NB. That line forms the angle $\pi/2 - \beta$ with the y-axis. Can you calculate its x-intercept?
Outline(s) of solution(s) to 4.8: Draw a picture of the stereographic projection from the North Pole N via $X = (x, y)$ to $B = (b, 0)$. Then draw a line through $A = (0, a)$ parallel to NB. That line forms the angle $\pi/2 - \beta$ with the y-axis. Its x-intercept equals $a \cdot b$.
Problem 4.9. Consider the stereographic projection from the North Pole of the circle centered at $(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. If $a > 0$, compute the altitudes of the triangle ABC, $A = (-a, 0)$, $B = (a, 0)$, $C = (0, 1)$, in two different ways and conclude that $\sin(2\cdot \alpha) = 2 \cdot \sin(\alpha) \cdot \cos(\alpha)$ for positive angles $\alpha < \pi/2$.
Hint(s) to 4.9: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to α, the argument of the point mapped to B by the stereographic projection?
Outline(s) of solution(s) to 4.9: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let α be the argument of the point mapped to B by the stereographic projection. The angle $\angle ACB = 2 \cdot \alpha$, the angle $\angle ABD = \pi/2 - \alpha$. Therefore $BC = 1/\cos(\alpha)$, $h = NA \cdot \sin(2 \cdot \alpha)$, and $h = AB \cdot \cos(\alpha) = 2 \tan(\alpha) \cdot \cos(\alpha) = 2 \cdot \sin(\alpha)$. Comparing the two formulae for h gives $\sin(2 \cdot \alpha) = 2 \cdot \sin(\alpha) \cdot \cos(\alpha)$.
Problem 4.10. Consider the stereographic projection from the North Pole of the circle centered at
$(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. If $a > 0$, compute the bases of altitudes of the triangle ABC, $A = (-a, 0)$, $B = (a, 0)$, $C = (0, 1)$, in two different ways and conclude that $\cos(2 \cdot \alpha) = 2 \cdot \cos^2(\alpha) - 1$ for positive angles $\alpha < \pi/2$.
Hint(s) to 4.10: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to α, the argument of the point mapped to B by the stereographic projection? Can you compute BD and CD using both triangles?
Outline(s) of solution(s) to 4.10: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let α be the argument of the point mapped to B by the stereographic projection. The angle $\angle ACB = 2 \cdot \alpha$, the angle $\angle ABD = \pi/2 - \alpha$. Therefore $CA = 1/\cos(\alpha)$, so $CD = CA \cdot \cos(2 \cdot \alpha) = \cos(2 \cdot \alpha)/\cos(\alpha)$ and $BD = AB \cdot \sin(\alpha) = 2 \cdot \tan(\alpha) \cdot \sin(\alpha)$. Since $CB = BD + DC$, one gets $\cos(2 \cdot \alpha) = 1 - 2 \cdot \sin^2(\alpha)$.
Problem 4.11. Consider the stereographic projection from the North Pole of the circle centered at $(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. If $a, b > 0$, compute the altitudes of the triangle ABC, $A = (-a, 0)$, $B = (b, 0)$, $C = (0, 1)$, in two different ways and conclude that $\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$ for positive angles $\alpha, \beta < \pi/2$.
Hint(s) to 4.11: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to β, the argument of the point mapped to B by the stereographic projection and α, the argument of the point mapped to $-A$ by the stereographic projection?
Outline(s) of solution(s) to 4.11: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let β be the argument of the point mapped to B by the stereographic projection. Let α be the argument of the point mapped to $-A$ by the stereographic projection. The angle $\angle ACB = \alpha + \beta$, the angle $\angle ABD = \pi/2 - \beta$. Therefore $BC = 1/\cos(\alpha)$, $h = NA \cdot \sin(\alpha + \beta)$, and $h = AB \cdot \cos(\beta) = 2 \tan(\alpha) \cdot \cos(\beta)$. Comparing the two formulae for h gives $\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$.
Problem 4.12. Consider the stereographic projection from the North Pole of the circle centered at $(0, \frac{1}{2})$ with radius $r = 1/2$ onto the x-axis. If $a, b > 0$, compute the bases of altitudes of the triangle ABC, $A = (-a, 0)$, $B = (b, 0)$, $C = (0, 1)$, in two different ways and conclude that $\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$ for positive angles $\alpha, \beta < \pi/2$.
Hint(s) to 4.12: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to β, the argument of the point mapped to B by the stereographic projection and α, the argument of the point mapped to $-A$ by the stereographic projection?
Outline(s) of solution(s) to 4.12: Let $h = AD$ be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let β be the argument of the point mapped to B by the stereographic projection. Let α be the argument of the point mapped to $-A$ by the stereographic projection. The angle $\angle ACB = \alpha + \beta$, the angle $\angle ABD = \pi/2 - \beta$. Therefore $AC = 1/\cos(\alpha)$, $CD = AC \cdot \cos(\alpha + \beta)$, and $DB = AB \cdot \sin(\beta) = (\tan(\alpha) + \tan(\beta)) \cdot \sin(\beta)$. Analyzing $CB = CD + DB$ gives $\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$.
Problem 4.13. Consider the stereographic projection from the North Pole of the circle centered at $(0, 1/2)$ with radius $r = 1/2$ onto the x-axis. If $b > a > 0$, consider the intersection C of the vertical line $x = b$ with the line passing through the North Pole and perpendicular to the line joining North Pole and $(a, 0)$. Show that $C = (b, 1 + a \cdot b)$ and conclude that $\tan(\beta - \alpha) = \frac{\tan(\beta) - \tan(\alpha)}{1 + \tan(\alpha) \cdot \tan(\beta)}$ for positive angles $\alpha < \beta < \pi/2$.
Hint(s) to 4.13: Draw a picture of the stereographic projection from the North Pole N via $B' = (x, y)$ to $B = (b, 0)$ and of the stereographic projection from the North Pole N via $A' = (x, y)$ to $A = (a, 0)$. Then draw a line through N perpendicular to NB and mark its intersection C with line $x = b$. What is the angle between NA and NB in terms of arguments α of A' and β of B'? Do you see that all points $N, A, B,$ and C' lie on one circle?
Outline(s) of solution(s) to 4.13: Draw a picture of the stereographic projection from the North Pole N via $B' = (x, y)$ to $B = (b, 0)$ and of the stereographic projection from the North Pole N via $A' = (x, y)$ to $A = (a, 0)$. Then draw a line through N perpendicular to NB and mark its intersection C with line $x = b$. The angle between NA and NB can be expressed in terms of arguments α of A' and β of B' as $\beta - \alpha$. Since all points N, A, B, and C lie on one circle with diameter NB, the angle between CA and CB is also $\beta - \alpha$. Apply that information to the right triangle ABC.
Math Dept, University of Tennessee, Knoxville, TN 37996-1300, USA
E-mail address: dydak@math.utk.edu