11. **Scalar product and vector product for complex numbers**

Problem 11.1. Given two complex numbers \(z \) and \(w \), the scalar product \(S(z, w) \) is defined as \((z \cdot \bar{w} + \bar{z} \cdot w)/2 \). Show that \(S(z, w) = \text{Re}(\bar{z} \cdot w) \). Conclude that \(S(z, w) = |z| \cdot |w| \cdot \cos(\alpha) \), where \(\alpha \) is the angle from \(z \) to \(w \) measured in counterclockwise direction.
Problem 11.2. Given two complex numbers z and w, the scalar product $S(z, w)$ is defined as $(z \cdot \bar{w} + \bar{z} \cdot w)/2$. Show that $|z + w|^2 = |z|^2 + |w|^2 + 2 \cdot S(z, w)$. Derive the Cosine Theorem from that equality.
Problem 11.3. Given two complex numbers \(z \) and \(w \), the scalar product \(S(z, w) \) is defined as \((z \cdot \bar{w} + \bar{z} \cdot w)/2 \). Show algebraically that \(S(z, w) = S(w, z) \).
Problem 11.4. Given two complex numbers \(z \) and \(w \), the scalar product \(S(z, w) \) is defined as \((z \cdot \bar{w} + \bar{z} \cdot w)/2\). Show algebraically that \(S(z, a \cdot w + b \cdot v) = a \cdot S(z, w) + b \cdot S(z, v) \) provided \(a \) and \(b \) are real.
Problem 11.5. Given two complex numbers z and w, the vector product $V(z, w)$ is defined as $i \cdot (z \cdot \bar{w} - \bar{z} \cdot w)/2$. Show that $V(z, w) = Im(\bar{z} \cdot w)$. Conclude that $V(z, w) = |z| \cdot |w| \cdot \sin(\alpha)$, where α is the angle from z to w measured in counterclockwise direction. Conclude that $|V(z, w)|$ is the area of parallelogram formed by z and w.
Problem 11.6. Given two complex numbers \(z \) and \(w \), the vector product \(V(z, w) \) is defined as
\[
 i \cdot (z \cdot \bar{w} - \bar{z} \cdot w)/2.
\]
Show algebraically that \(V(z, w) = -V(w, z) \).
Problem 11.7. Given two complex numbers z and w, the vector product $V(z, w)$ is defined as $i \cdot (z \cdot \bar{w} - \bar{z} \cdot w)/2$. Show algebraically that $V(z, a \cdot w + b \cdot v) = a \cdot V(z, w) + b \cdot V(z, v)$ provided a and b are real.
Problem 11.8. Given two complex numbers z and w, the scalar product $S(z, w)$ is defined as $(z \cdot \bar{w} + \bar{z} \cdot w)/2$. If $z = x_1 + y_1 \cdot i$ and $w = x_2 + y_2 \cdot i$, show that $S(z, w) = x_1 \cdot x_2 + y_1 \cdot y_2$.
Problem 11.9. Given two complex numbers z and w, the vector product $V(z, w)$ is defined as $i \cdot (z \cdot \bar{w} - \bar{z} \cdot w)/2$. If $z = x_1 + y_1 \cdot i$ and $w = x_2 + y_2 \cdot i$, show that $V(z, w) = x_1 \cdot y_2 - x_2 \cdot y_1$, the determinant of the matrix $[[x_1, y_1], [x_2, y_2]]$.
Problem 11.10. Find the area of the triangle with vertices $P(-1, 1), Q(1, -1)$ and $R(1, 1)$.
Hint(s) to 11.10: How are triangles related to parallelograms? How do we compute areas of parallelograms?
Answer to 11.10: 2
Problem 11.11. Find the remaining two vertices Q and S of the square whose diagonal joins points $P = (1, -1)$ and $R = (3, 1)$.
Hint(s) to 11.11: Can you find the center C of the square? How does one get vector CQ from the vector CP?
Answer to 11.11: $Q = (1, 1), S = (3, -1)$
Problem 11.12. If \(z_1/z_2 = a + b \cdot i \), then \(z_1 = a \cdot z_2 + b \cdot (i \cdot z_2) \), \(a \cdot z_2 \) is parallel to \(z_2 \), and \(b \cdot (i \cdot z_2) \) is perpendicular to \(z_2 \). Express vector \(\vec{v} = [-2, 4] \) as \(\vec{v} = \vec{v}_1 + \vec{v}_2 \), where \(\vec{v}_1 \) is parallel to \([1, 1]\) and \(\vec{v}_2 \) is perpendicular to \([1, 1]\). Report \(\vec{v}_2 \).
Answer to 11.12: $[-3, 3]$
Math Dept, University of Tennessee, Knoxville, TN 37996-1300, USA
E-mail address: dydak@math.utk.edu