1. Let \(\sigma \) be reflection in the line \(y = x \), and let \(\tau \) be reflection in the line \(x = 1 \). The composite transformation \(\sigma \circ \tau \circ \sigma \) is a reflection; what is its mirror line?

We have:

\[
\sigma : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}, \quad \tau : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2 - x \\ y \end{bmatrix}.
\]

Composing these transformations gives

\[
\begin{bmatrix} x \\ y \end{bmatrix} \overset{\sigma}{\mapsto} \begin{bmatrix} y \\ x \end{bmatrix} \overset{\tau}{\mapsto} \begin{bmatrix} 2 - y \\ x \end{bmatrix} \overset{\sigma}{\mapsto} \begin{bmatrix} x \\ 2 - y \end{bmatrix},
\]

whence \(\sigma \tau \sigma \) is reflection in the line \(y = 1 \).

2. Let \(\sigma \), \(\tau \) be reflections in lines \(\ell_1 \), \(\ell_2 \) respectively. Determine the mirror line of \(\sigma \circ \tau \circ \sigma \).

Hint: find the fixed points of this composite transformation.

Let \(x \) be a point on the line \(\sigma(\ell_2) \). Then \(\sigma(x) \) lies on \(\ell_2 \), whence \(\sigma(x) \) is fixed by \(\tau \) and \(\sigma \tau \sigma(x) = \sigma \sigma(x) = x \). Therefore the set of fixed points of \(\sigma \tau \sigma \) contains the line \(\sigma(\ell_2) \). However, an orientation-reversing isometry of the Euclidean plane is either a reflection or a glide-reflection, and since the set of fixed points of \(\sigma \tau \sigma \) is non-empty, \(\sigma \tau \sigma \) must be a reflection, with mirror-line \(\sigma(\ell_2) \).

3. Let \(\sigma \), \(\tau \) be inversions in circles \(C_1 \), \(C_2 \) respectively. The composite \(\sigma \circ \tau \circ \sigma \) is an inversion; identify the circle in which it inverts points.

Let \(x \) be a point on \(\sigma(C_2) \) (\(\sigma(C_2) \) is either a circle or possibly a straight line.) Then \(\sigma(x) \) lies on \(C_2 \), whence \(\sigma(x) \) is fixed by \(\tau \) and \(\sigma \tau \sigma(x) = \sigma \sigma(x) = x \). Therefore the set of fixed points of \(\sigma \tau \sigma \) contains \(\sigma(C_2) \). It is given that \(\sigma \tau \sigma \) is an inversion; its inverting circle is its set of fixed points, namely \(\sigma(C_2) \) (exceptionally \(\sigma(C_2) \) could be a straight line, i.e. a "circle" of infinite radius.)
4. Let \(C_1 \) be the circle of radius 1 centered at the origin, and let \(C_2 \) be the circle of radius 1 centered at the point \((3, 0)\). Let \(\sigma, \tau \) be inversions in the circles \(C_1, C_2 \) respectively. Show that if \(P \) is any point not on the x-axis, then \(P \) is not fixed by \(\tau \circ \sigma \). Find all points fixed by \(\tau \circ \sigma \).

(This neat argument was used in some people’s homework.) Let \(Q_1, Q_2 \) be the centers of \(C_1, C_2 \) respectively, and suppose that \(P \) is fixed by \(\tau \sigma \). First we eliminate some trivial cases. We note that \(\tau \sigma(Q_1) = \tau(\infty) = Q_2 \neq Q_1 \), and that \(\tau \sigma(Q_2) \) cannot equal \(Q_2 \), since \(\sigma(Q_2) \neq \infty \). Therefore \(P \) cannot equal either of \(Q_1, Q_2 \). Furthermore, if \(P \in C_1 \), then \(\tau \sigma(P) = \tau(P) \) cannot equal \(P \) as the circles \(C_1, C_2 \) are disjoint; similarly, if \(P \in C_2 \), then \(\sigma(P) \notin C_2 \), whence \(\tau \sigma(P) \notin C_2 \) and thus \(P \neq \tau \sigma(P) \). Therefore we may also assume that \(P \) does not lie on either circle.

It follows that the points \(Q_1, P, \sigma(P) \) are distinct and collinear, and that the points \(Q_2, P, \tau(P) \) are distinct and collinear. But \(\tau \sigma(P) = P \Rightarrow \sigma(P) = \tau(P) \), so the points \(Q_1, P, \sigma(P), Q_2 \) are collinear. In particular, \(P \) must lie on the line joining \(Q_1, Q_2 \), namely the x-axis.

To locate the fixed points of \(\sigma \tau \), we consider each inversion as acting on the x-axis, and write \(\sigma(x) = \frac{1}{x} \), \(\tau(x) = 3 - \frac{1}{3-x} \). Solving \(\sigma(x) = \tau(x) \) gives us

\[
\frac{1}{x} = 3 - \frac{1}{3-x} \iff x = \frac{3-x}{8-3x} \iff x^2 - 3x + 1 = 0
\]

Solving this quadratic, we find that there are two fixed points on the x-axis, with x-coordinates \(\frac{3 \pm \sqrt{5}}{2} \).

5. Repeat Q4, but with \(C_2 \) the circle of radius 1 centered at the point \((2, 0)\).

The argument showing that all fixed points of \(\tau \sigma \) lie on the x-axis is almost identical, the only difference being that this time the circles \(C_1, C_2 \) meet at the point \((1, 0)\). However, this point does lie on the x-axis, so the conclusion is unaltered.

We locate the fixed point(s) of \(\tau \sigma \) similarly. The inversion \(\sigma \) is as in Question 4, and we have \(\tau(x) = 2 - \frac{1}{2-x} \). The equation to solve is

\[
\frac{1}{x} = 2 - \frac{1}{2-x} \iff x = \frac{2-x}{3-2x} \iff x^2 - 2x + 1 = 0
\]

but this time there is a repeated root \(x = 1 \). We deduce that the only fixed point of \(\tau \sigma \) is \((1, 0)\).