Math 504, Lecture 1, Spring 2004

Introduction to Discrete Mathematics

Propositional Logic

1) Discrete mathematics

a) Discrete mathematics is a catchall term that includes several branches of mathematics. The common thread is that these branches of mathematics typically have no use for the taking of limits (i.e.,the continuum mathematics of calculus, analysis, differential equations, topology, high school algebra, and advanced probability). The objects under study are finite or else infinite in a fashion that does not bring them closer and closer together (i.e., there are always discrete steps between objects). This is not a definition so much as a feeling, and the line between discrete and continuum mathematics is not sharp. Customarily the term discrete mathematics includes the following branches.

i) Formal Logic: This includes symbolic logic, propositional logic, and predicate logic. Such logic is the foundation of mathematics. It provides the basis for interpreting mathematical statements and the tool by which one demonstrates the truth or falsehood of such statements. More broadly it provides a powerful tool for analyzing the validity of reasoning about truth in general.

ii) Set Theory: Informally we define a set as a collection of objects. The resulting theory of how one can operate on sets is known as naïve set theory. It is naïve because the informal definition leads to subtle paradoxes. A more careful definition of set removes these paradoxes and leaves the conclusions of naïve set theory intact. In practice, then, naïve set theory is what mathematicians almost invariably use. Unexpectedly the structure of basic set theory is parallel to that of propositional logic. Sets are foundational mathematical objects. In some sense practically every mathematical object (numbers, functions, surfaces, etc.) is a set.

iii) Relations: In mathematics it is frequently useful to describe or define some relationship between mathematical objects. The most familiar relations are =, <, and >, but many more exist. In particular functions are a special case of relations. The language of relations and functions has proved a powerful tool in stating mathematical results clearly and then proving them.

iv) Proofs: Mathematics is about objective truth that is not merely true but also provable. This is why mathematicians do not typically debate the truth of mathematics, why there are no competing theories in mathematics, and why personalities play no role in determining what is “accepted” as true. Either the result is proved or it is not. Thus to be a mathematician is to learn to prove. We will learn what constitutes a valid proof and why these proofs (and not others) establish truth. As a useful step along the way we will learn a taxonomy (naming scheme) of proofs.

v) Mathematical Induction: Theorems in discrete mathematics often assert the truth of a particular proposition for every positive integer. Mathematical induction is a proof technique particularly well-suited to establish such results. Despite its name, mathematical induction is a deductive (rather than inductive) way of reasoning. It mystifies most people who see it for the first time, but it is easily mastered with experience.

vi) Number Theory: Algebra, geometry, and number theory are the ancient branches of mathematics beyond basic arithmetic (though some people might include music and astronomy). Traditionally number theory concerns the properties of the integers — e.g., being prime or composite, congruence modulo some integer, divisibility. Some modern applications of number theory are found in cryptography, data validation (checksums), and manufacturing (designing gears to mesh in ways that avoid patterns of wear).

vii) Graph Theory: This relatively new field of mathematics, a branch of combinatorics, is not more than two or three centuries old. It addresses structures consisting of vertices (dots typically) joined by edges (lines or curves typically). These structures naturally model many phenomena, both natural and manmade, in creation and so are of interest for their applicability as well as their intrinsic properties. For instance, graphs arise naturally in transportation problems (logistics), printed circuit board design, tournament bracket construction, and the construction of efficient data structures and algorithms.

viii) Enumeration:  Another branch of combinatorics, enumeration has been studied since the late Middle Ages or early Renaissance (I think). Enumeration is simply a fancy word for counting. It has always been important for the study of probability since in many cases a probability is simply the fraction of favorable cases over total cases. It has grown dramatically, however, with the advent of computers. Evaluating the complexity of algorithms and the security of password schemes depend on counting as do more mundane tasks such as determining whether license plate schemes and phone number schemes will produce enough possibilities to serve the current population.

b) As the above discussion indicates, discrete mathematics includes both ancient and relatively modern topics. It has gained prominence in the past few generations, perhaps because of the increasing number of technologies that rely on discrete (digital) phenomena rather than analog (continuous) ones.

c) Similarly, discrete mathematics has pushed itself ever deeper and earlier into the school mathematics curriculum in the past generation or two. You must decide for yourself whether this is a good change. It does, however, offer many new opportunities for presenting serious mathematics to students.  Unlike calculus (and even trigonometry, analytic geometry, and some algebra), many topics in discrete mathematics have readily comprehensible applications and their study has few prerequisites. One can study quite a bit of interesting number theory, enumeration, and graph theory without knowing any more mathematics than the arithmetic of whole numbers. One can even find and write valid proofs with such a background. A little algebra is helpful for studying logic, set theory, and graph theory, but the requirements are minimal. (For instance, when I was homeschooling my eldest son, I took him through half a college text in symbolic logic during ninth grade when he was also learning Algebra I. He had great success with that material despite his limited mathematics background.) 

2) Propositional Logic

a) Propositional logic is the study of propositions (true or false statements) and ways of combining them (logical operators) to get new propositions. It is effectively an algebra of propositions. In this algebra, the variables stand for unknown propositions (instead of unknown real numbers) and the operators are and, or, not, implies, and if and only if (rather than plus, minus, negative, times, and divided by). Just as middle/high school students learn the notation of algebra and how to manipulate it properly, we want to learn the notation of propositional logic and how to manipulate it properly.

b) Symbol manipulation has a bad reputation in some circles, and rightly so when one learns it without understanding what the symbols and manipulations mean. On the other hand, as you know, the development of good notation is a huge part of the history of mathematics. Good notation greatly facilitates clear thinking, intuition, and insight. It strips away the irrelevant to help us see true relationships that would otherwise be invisible. Good manipulation skills allow us to proceed from one conclusion to the next quickly, confidently, and verifiably. They save us from having to justify routine, familiar steps every time we encounter them, and they suggest new ways of proceeding that we might never have discovered otherwise.

c) The Two Elements of Symbolic Logic: Propositions

i) A proposition is a statement with a truth value. That is, it is a statement that is true or else a statement that is false. Here are some examples with their truth values.

(1) Ayres Hall houses the mathematics department at the University of Tennessee. (true)

(2) The main campus of the University of Kentucky is in Athens, Ohio. (false)

(3) Homer was the blind poet who composed the Illiad and the Odyssey. (The statement is certainly true or false, but we may not know which. Tradition asserts the truth of this proposition, but some scholars doubt its truth).

(4) Jesus of Nazareth was God incarnate. (Again the statement is certainly true or false, even though many people stand on both sides of the question.)

(5) It will rain in Knoxville tomorrow. (We cannot know the truth of this statement today, but it is certainly either true or false.)

(6) 2+2=4 (true)

(7) 2+2=19 (false)

(8) There are only finitely many prime numbers. (false)

(9) Every positive even integer greater than 2 can be written as the sum of two prime numbers. (This is certainly true or false, but no one knows which. The proposition is known as Goldbach’s Conjecture. It holds for every integer yet tested – e.g, 4=2+2, 6=3+3, 8=3+5 – but no one has found a proof that it holds for all even integers greater than two.)

ii) On the other hand, here are some examples of expressions that are not propositions.

(1) Where is Ayres Hall? (This is neither true nor false. It is a question.)

(2) Find Ayres Hall! (This is neither true nor false. It is a command.)

(3) Blue is the best color to paint a house. (This is a matter of opinion, not truth. It may be your favorite color, but it is not objective truth.)

(4) Coffee tastes better than tea. (Again, this is a matter of taste, not truth.)

(5) The integer n is even. (Since n has no value, this statement is neither true nor false. If n is given a value, this statement becomes a proposition. Later we will call such statements predicates or propositional functions. They are not propositions, but they become propositions when their variables are assigned values.)

d) The Two Elements of Symbolic Logic: Logical Operators

i) Arithmetic operators (operations) such as addition, subtraction, multiplication, division, and negation act on numbers to give new numbers. Logical operators such conjunction (and), disjunction (or), and negation (not) act on propositions to give new (compound) propositions. Logical operators should be truth functional; that is, the truth value of the compound proposition should depend only on the truth value of the component propositions. This makes it easy to specify the effect of a logical operator: we simply list the truth value of the compound proposition for every combination of truth values of the component compositions. Such a list is a called a truth table. Note that no such definition of arithmetic operations is possible because there are infinitely many possible values of numbers.

ii) The Common Logical Operators

(1) Conjunction (and): The conjunction of propositions p and q is the compound proposition “p and q”. We denote it 
[image: image1.wmf]pq

Ù

. It is true if p and q are both true and false otherwise. For instance the compound proposition “2+2=4 and Sunday is the first day of the week” is true, but “3+3=7 and the freezing point of water is 32 degrees” false. The truth table that defines conjunction is
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(2) Disjunction (or):

(a) In English the word or has two senses: inclusive and exclusive. The inclusive sense means “either or both” as in “to be admitted to the university you must have an ACT composite score of at least 17 or a high school GPA of at least 2.5.” The exclusive sense means “one or the other but not both” as in “for dinner I will have a sirloin steak or the fried shrimp platter” or “is the capital of Kentucky Louisville or Lexington?” In mathematics and logic the word or always has the inclusive sense; exceptions require alarm bells and warning lights.

(b) The disjunction of propositions p and q is the compound proposition “p or q”. We denote it 
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. It is true if p is true or q is true or both. For instance the compound proposition “2+2=4 or Sunday is the first day of the week” is true, and “3+3=7 or the freezing point of water is 32 degrees” is also true, but “2+2=5 or UT is in Oklahoma” is false. The truth table that defines disjunction is

	p
	q
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(3) Negation (not): The negation of a proposition p is “not p”. We denote it 
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. It is true if p false and vice versa. This differs from the previous operators in that it is a unary operator, acting on a single proposition rather than a pair (the others are binary operators). Sometimes there are several ways of expressing a negation in English, and you should be careful to choose a clear one. For instance if p is the proposition “2<5”, then reasonable statements of ~p are “it is not the case that 2<5” and “2 is not less than 5” and “
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”. The truth table that defines negation is

	p
	~p
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(4) Conditional (implies, if-then):

(a) An implication is a compound proposition of the form “if p then q” or “p implies q”. In English this phrase carries many meanings. Sometimes it means that p causes q as in “if you eat too much you will get fat.” Sometimes it means that p guarantees q and vice versa as in “if you write a book report, I will give you five points extra credit” (tacitly assuring you that if you do not write it, I certainly will not give you extra credit). Sometimes it takes a very weak sense, simply asserting that the truth of p guarantees the truth of q as in “if you resign the chess game, you will lose” (but of course if you play on in a bad position, you will probably lose anyway — continued play does not guarantee winning). 

(b) Mathematics and logic always use implication in this weakest sense. Why? Because this is the very least that implication means in English. It makes our claims as conservative as possible. If we take “if-then” in this very weak sense, then we will never assume the phrase means more than it should. We denote the compound proposition “p implies q” by 
[image: image7.wmf]pq

®

. From our discussion above the truth table for implies is

	p
	q
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(c) Thus an implication is true unless its antecedent p is true and its consequent q is false. For instance, suppose I say “if I win the lottery, I will give each of you $5.00.” Obviously if I win the lottery and give you $5.00, I have kept my word. Similarly if I do not win and I do not give you $5.00, I have kept my word. What if I do not win but I still give you $5.00 (here p is false and q is true)? In our technical use of implies, I have still kept my word; my promise is still kept. The point is that I made a promise only about what I would do if I did win the lottery. If I did not win the lottery, I am free to do as I will. The only way I can break my word is to win the lottery but not give you $5.00.

(d) Similarly conditionals like “if 2+2=5, then all prime numbers are even” are true, even if their usefulness is not immediately apparent.

(e) The implication 
[image: image9.wmf]pq

®

has many phrasings in English. It is helpful to be well acquainted with the possibilities as some of them are counterintuitive. Here are a few.

(i) if p then q

(ii) p implies q

(iii) p is sufficient for q

(iv) q is necessary for p

(v) q, if p

(vi) p only if q (unexpected but correct)

(5) Biconditional (if and only if): The biconditional of propositions p and q is the compound proposition “p if and only if q” or “p is necessary and sufficient for q”. We denote it 
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. It is true if p and q have the same truth value (both true or both false). It is, in fact, one of the stronger senses of the phrase “if…then…” in everyday English as mentioned above. The biconditional “2+2=4 if and only if Sunday is the first day of the week” is true, and “3+3=7 or the freezing point of water is 32 degrees” is false, but “2+2=5 or UT is in Oklahoma” is true. The truth table that defines the biconditional is

	p
	q
	
[image: image11.wmf]pq

«



	T
	T
	T

	T
	F
	F

	F
	T
	F

	F
	F
	T


(6) Exclusive or (xor, p or q but not both): It is possible to define a logical operator for exclusive or. The book discusses the idea briefly on page four, but the concept will not interest us much in this course.

(7) Other notations are common for logical operators. You may encounter & for and, | for or, 
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for not, and 
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 for the conditional.

iii) In a more extensive treatment of logic we would define careful rules about order of logical operation, just as we teach students in pre-algebra about arithmetic/algebraic order of operation. For our course, however, we will introduce just two simple rules: First evaluate parentheses from the inside out. Second, subject to the first rule evaluate negation before other operators. These two rules require us to indicate the order of all binary operations explicitly using parentheses. For instance 
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 is ambiguous, possibly meaning 
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e) Truth Tables

i) A truth table lists the truth values of a compound proposition for every combination of truth values of its component simple propositions. Truth tables are a basic tool of propositional logic. Below I present a simple way of constructing truth tables. The book also shows a more efficient way that you may prefer.

ii) First note that if a compound proposition involves n simple propositions, then its truth table must have 
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 lines (since there are two choice for the truth value of each of n propositions). It is tedious to construct truth tables for compound propositions involving more than three simple propositions. It is also important to have a simple pattern for listing all possible combinations of the truth values of those simple propositions.

iii) For example, suppose we want the truth table for 
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. Here is the truth table we get, building up one operator at a time.
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iv) Why are truth tables important?

(1) A truth table gives us complete information about the role that the form of a compound proposition plays in determining the truth of the compound proposition. Form is the key word. An expression like 
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 is only a form until actual propositions replace the variables p, q, and r. (just as in arithmetic/algebra an expression like 
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 is only a form until actual numbers replace the variables x and y).

(2) Mathematics often studies form rather than content. For instance we know that the numbers that make the form 
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 equal some fixed positive constant take the shape of a hyperbola. An algebraic expression like 
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 represents an infinite collection of numbers generated by a common arithmetic form. Simplistically speaking, we often characterize such forms by the shapes of graphs (line, parabola, ellipse, etc.); shapes are helpful in describing infinite collections of points. Tables, on the other hand, are seldom useful since a table of values for 
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has infinitely many lines, one for each possible value of x and y.

(3) Logical variables (p, q, r, etc.) stand for infinitely many propositions, but these propositions can take on only two truth values. Thus there are only finitely many ways to assign truth values to a logical expression like 
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. The truth table lists the possible assignments together with the resulting truth value of the expression. This describes the form perfectly and completely, giving us far more information about the logical expression than the graph does for an algebraic expression. A truth table is the natural way to try to answer every question about a logical expression.

f) Logical Equivalence

i) Two expressions are logically equivalent if they have the same truth table. In other words, their component simple propositions take on the same truth values, then the expressions take on the same truth values.

ii) For example, the expressions 
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 are logically equivalent as the following truth tables show.
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iii) We use the symbol 
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 to indicate logical equivalence (the symbol 
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 is probably more common, but it is also more confusing). In the above case we write 
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. Note 
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 is not a logical operator. Rather it indicates a kind of equality. The statement 
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 is an actual, concrete proposition (a true one), not a formal expression with a truth table.

iv) The notion of logical equivalence is similar to that of algebraic identity. For instance, when we write the identity 
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, we are saying that once the values of x and y are fixed the two expressions evaluate to the same number (i.e., identical inputs always produce identical outputs). This is useful because it means we can freely substitute one expression for the other. Similarly we may freely replace a compound proposition by another one that is logically equivalent. One can, thus, discover and prove new logical equivalences by taking a compound proposition and successively replacing parts of it by logically equivalent expressions. The book gives an example of this process in the second paragraph on page 16, justifying each step with one of the “famous equivalences” below.

v) Famous Equivalences

(1) Just as we use certain algebraic identities again and again, there are logical equivalences that prove useful frequently. For instance, associated to a conditional 
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are three other conditionals: the converse 
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, the inverse 
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, and the contrapositive 
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. It turns out that the contrapositive is logically equivalent to the original conditional and the converse is logically equivalent to the inverse. That is 
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. These terms are worth memorizing.

(2) This is intuitively clear. For instance to say “if n is odd, then so is its square” is clearly equivalent to saying “if the square of n is not odd, then neither is n itself.”

(3) Theorem 1.4 on pp. 14–15 lists other common logical equivalences. These are not worth memorizing, but you should read them over a time or two to become acquainted with them.

g) Tautologies and Contradictions

i) Some compound propositions have a truth value of true regardless of the truth values of their component propositions. That is, their truth tables show them being true on every line. Such propositions are called tautologies (the book also uses the somewhat confusing term logically true — a better term would be formally true). A simple example is 
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 whose truth table appears below.

	p
	~p
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ii) This tautology guarantees the truth of statements like “
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” and “UT is in Knoxville or UT is not in Knoxville.” The form guarantees the truth of the statement regardless of its content.

iii) In studying propositional logic we sometimes encounter a need for a tautology, any tautology. Instead of inserting one haphazardly we simply use the boldface letter T to stand for such a tautology.

iv) Similarly an expression has a truth value of false regardless of the truth values of its component propositions is called a contradiction (or logically false). We denote contradictions by F. An example is 
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, covering such propositions as “UT is in Knoxville and UT is not in Knoxville.” Its truth table is

	p
	~p
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v) Continuing the analogy between logical and algebraic expressions, we recognize tautologies and contradictions as the “constant functions” of propositional logic; a contradiction is false by form regardless of its content just as x-x=0 regardless of the value of x.

vi) The book shows several more logical equivalences involving tautologies and contradictions at the top of page 16.

3) The Importance of Form

a) The validity of deductive argument (proof) depends solely on the form of the argument. This seemingly astonishing statement is intuitively clear upon examination of an example or two.

b) For instance consider the argument “All men are mortal. Socrates is a man. Therefore Socrates is mortal.” This argument is obviously valid and will remain so if mortal is replaced by asleep, men is replaced by dogs, and Socrates is replaced by fido. Indeed all arguments of this form are valid (what is the form? “All a are b. X is an a. Therefore X is a b.”)

c) Thus if we wish to argue validly we must learn which forms constitute valid arguments and which do not.

d) For this reason the book contains many exercises asking you to take a concrete compound proposition in English and convert it into symbols (showing its form) or to substitute concrete propositions into a logical expression (form) to get a clear English sentence. The book gives a number of examples of such translations. I will not belabor that process in my lecture notes since it is usually straightforward in reasonably simple cases such as appear in the book.
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