Math 504, Lecture 4, Spring 2004

Posets, equivalence relations, and functions

1) Special Relations: Sections 2.6–2.8: Let R be a relation on a set A. If R is reflexive, antisymmetric, and transitive, then R is a partial order. That is, R behaves somewhat like ≤. If R is reflexive, symmetric, and transitive, then R is an equivalence relation. That is, R behaves somewhat like =. On the other hand, if R is a relation from A to B such that each element of A appears in R exactly once, then R is a function.

2) Partially Ordered Sets (Posets)

a) Let A be a set, and let R be a relation on A that is reflexive, antisymmetric, and transitive: Then R is a partial order on A, and the pair (A,R) is called a partially ordered set or poset for short. Intuitively a partial order puts the objects of A in order, making some less than others and some greater than others. It is a partial order because some objects in A may not be related to each other at all. Objects related to each other are comparable. Objects not related to each other are incomparable.

b) Examples

i) Let A={1,2,3,4}. Then we know the power set of A is P(A)={∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}. Define a relation on P(A) by aRb if a⊆b. In other words, R={(B,C):B⊆A, C⊆A, and B⊆C}. Then R is a partial order and (P(A),R) is a poset. More simply, one might say simply (P(A),⊆) is a poset.

ii) How can we prove that (P(A),⊆) is a poset? We have to show that ⊆ is reflexive, antisymmetric, and transitive.

(1) reflexive (aRa for all a): Let B∈P(A). Then B⊆ B, so ⊆ is reflexive.

(2) antisymmetric (if aRb and bRa, then a=b): Let B,C∈P(A) with B⊆C and C⊆B. We have already seen that when sets contain each other, then they are equal. Therefore B=C, and ⊆ is antisymmetric.

(3) transitive (if aRb and bRc, then aRc): Let B,C,D ∈ P(A) with B⊆C and C⊆D. Can we conclude B⊆D? We most prove it as follows: Let b∈B. Since B⊆C, then b∈C. But since C⊆D, then b∈D. Since b∈B implies b∈D, we see that B⊆D, as desired. Thus ⊆ is transitive.

(4) Therefore, since we have shown that ⊆ is reflexive, antisymmetric, and transitive, then ⊆ is a partial order on P(A).

iii) This means that ⊆ behaves on P(A) somewhat like ≤ does on the set of positive integers ℙ. It makes some sets lesser and some sets greater. For instance, {1}⊆{1,2,3}, and ∅⊆{4}. On the other hand some sets are incomparable. For instance of the sets {1} and {2,3,4} neither is a subset of the other. Similarly {2,3} and {3,4} are incomparable.

iv) A common graphical representation of a poset (A,R) is the Hasse diagram. Each element of A becomes a vertex in the diagram. If a,b∈A with aRb and there is no intervening c∈A such that aRc and cRb, then we put the vertex for b somewhere above the vertex for a and draw a line segment between the vertices.

v) Here is the Hasse diagram for the poset (P(A),⊆) above (set braces omitted for clarity).
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vi) The previous poset has a smallest element ∅ less than or equal everything and a greatest element greater than or equal to everything. This is not the case with all posets.

vii) For example, let A={2,3,4,5,6,7,8,9} and define a relation R on A by R={(a,b) : a is a divisor of b}. It is easy to show that (A,R) is a partial order: Every number is a divisor of itself (reflexive). If a and b are divisors of each other then they are the same number (symmetric). If a is a divisor of b and b is a divisor of c, then a is a divisor of c (transitive). Therefore (A,R) is a partial order. Here is its Hasse diagram.
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viii) If all the elements in a poset are comparable, then the poset is a chain or total ordering. The Hasse diagram of a chain is simple — just a vertical line with dots on it. For instance, Let A={1,2,3,4} ordered by ≤ in the usual fashion. The poset (A,≤) is a total order with the following Hasse diagram.


ix) Partial orders come up in many settings, both mathematical and nonmathematical. For instance, the subspaces of a vector space ordered by set inclusion form a poset. English words under alphabetical order form a chain. You can order functions on the real numbers by saying f≤g if f(x) ≤ g(x) for every real number x. That is f ≤ g if point by point the graph of f never lies above the graph of g.

x) On the other hand, many tempting ordering schemes are not partial orders. For instance, ordering people by weight is not a partial order since two people can have the same weight but still be two different people (not antisymmetric). The plan of problem #6 (xRy if x has a larger social security number than y) is not a partial order since no one has a larger SSN than himself (not reflexive). Ordering basketball teams by which team beats the other is not a partial order because team A can beat team B, team B can beat team C, and yet team A can still lose to team C (not transitive — actually this relation is not reflexive or antisymmetric either).

3) Equivalence Relations

a) Introduction

i) If a relation R on a set A is reflexive, symmetric, and transitive, then R is an equivalence relation. You have encountered many equivalence relations in prior mathematics classes; indeed the notion of equivalence relation is one of the most important in mathematics. Whenever you say that two mathematical objects are equal or equivalent or congruent or similar or somehow “the same as each other”, you are using an equivalence relation.

ii) An equivalence relation on a set A partitions the set into subsets. Objects within a subset are somehow the same as each other. Objects in different sets are, in the same sense, different from each other. Consider, for instance, assigning exam grades to a class. Perhaps you use a grading scale like 90–100 is an A, 80–89 is a B, etc. You have now established an equivalence relation. All scores from 90 to 100 are “the same” They all give students the same grade. In this sense you might write 91=97 but 89≠90 since 91 and 97 are both A’s (as is 90), but 89 is a B. Similarly under this scheme 59=23, but 59≠64 since 59 is an F but 64 is a D.

iii) Under such circumstances a set of objects that are “the same” as each other form an equivalence class. For instance in the grade example above, the equivalence classes are {0,…,59}, {60,…,69}, {70,…,79}, {80,…,89}, {90,…100}. Numbers in the same class are “equal,” giving the same grade. Numbers in different classes are “unequal,” giving different grades. Note that, as the previous point mentions, the equivalence classes partition the underlying set A, in this case {0,…,100}. That is, every number in A goes into exactly one equivalence class. This is what not

iv) Similarly when we write 1/2=2/4=3/6 etc., we are invoking an equivalence relation. The symbols are certainly different (that is the expressions 2/4 and 3/6 do not even involve the same symbols), yet in a familiar sense the numbers are the same. In this case the equivalence classes have infinitely many sets of symbols (for instance {1/2,2/4,3/6,…}) and there are infinitely many equivalence classes, yet they still partition the set of symbols {a/b : a and b are positive integers}.

v) Note again, however, that the defining properties of an equivalence relation are reflexivity, symmetry, and transitivity. A relation that possesses these properties always behaves like a kind of equality (thus the name equivalence relation). Every notion of equality possesses these three properties.

b) Proving that a relation is an equivalence relation

i) Let A={1,2,3,4,5,6}. Define a relation on A by R={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), (4,4)(4,5),(5,4),(5,5),(6,6)}. A little careful inspection shows that R is reflexive, symmetric, and transitive, so R is an equivalence relation.

ii) Let A be the set of triangles in the plane, and define a relation R on A by aRb if and only if triangles a and b are congruent. If a is a triangle, then a is congruent to itself, so aRa. Thus R is reflexive. If a and b are triangles with aRb, then bRa as well (if a is congruent to b, then b is congruent to a). Thus R is symmetric. If a, b, and c are triangles with aRb and bRc, then aRc (if a is congruent to b and b is congruent to c, then a is congruent to c). Thus R is transitive. Therefore congruence of triangles is an equivalence relation.

iii) Let ℤ be the set of integers, and define a relation R on ℤ by aRb whenever the difference between a and b is a multiple of 3. That is (a,b)∈R if and only if b​−a=3k for some integer k. Let us show that R is an equivalence relation: If a∈ℤ, then a−a=0=3∙0, so aRa. Thus R is reflexive. If a,b∈ℤ with aRb, then b−a=3k for some integer k. Thus a−b=−(b−a)=−3k=3(−k). Since −k is also an integer, this shows that bRa and R is symmetric. If a,b,c ∈ ℤ with aRb and bRc, then b−a=3k and c−b=3m for some integers k and m. Then c−a=(c−b)+(b−a)=3m+3k=3(m+k). Since m+k is an integer, this shows that aRc and R is transitive. Therefore R is an equivalence relation. This particular equivalence relation is called congruence modulo 3.

iv) Let A be the set of people living at only one address in the US. Define a relation R on A by aRb if and only if a and b live in the same zip code. Let us show that R is an equivalence relation. Let a∈A. Then aRa since everyone lives in the same zip code as himself, so R is reflexive. Let a,b∈A with aRb. This say a lives in the same zip code as b. Thus b lives in the same zip code as a, so bRa and R is symmetric. Let a,b,c∈A with aRb and bRc. Then a lives in the same zip code as b and b lives in the same zip code as c, so a lives in the same zip code as c. So aRc and R is transitive. Therefore R is an equivalence relation.

c) Defining and finding equivalence classes

i) Let R be an equivalence relation on A. If a∈A, we define the set [a]={b∈A : bRa}, called the equivalence class containing a. That is [a] is the set of all elements of A that are related to a. We also define the set [A]R={[a] : a∈A}, the set of all equivalence classes of A under equivalence relation R.

ii) Let A={1,2,3,4,5,6}. Define a relation on A by R={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), (4,4)(4,5),(5,4),(5,5),(6,6)}. We saw above that R is an equivalence relation. It is easy to see that [1]={1,2,3} since 1R1, 2R1, and 3R1, and nothing else is related to 1. Similarly [2]=[3]={1,2,3}. On the other hand [4]=[5]={4,5}, and [6]={6}. So elements equivalent to each other yield identical equivalence classes.

iii) An aside on partitions

(1) Note that in the previous example [A]​R={{1,2,3},{4,5},{6}}. This is a partition of the set A={1,2,3,4,5,6}. That is every element in [A]R is a subset of A, every element in A appears in exactly one of the sets in [A]R, and no set in [A]R is empty. This is no coincidence. Whenever R is an equivalence relation on a set A, the set [A]R is a partition of A.

(2) Formally, a partition of a set A is a set B={B1,B2,…,Bn} in which Bi⊆A for 1 ≤ i ≤ n, no Bi is empty, Bi∪Bj=∅ (note that sets with empty intersection are called disjoint; and if in a collection of sets each pair is disjoint, then the collection is pairwise disjoint) whenever i≠j, and B1∪B2∪…∪Bn=A. The sets Bi are called blocks of the partition. In words, then, a partition of a set A is a set of nonempty, pairwise disjoint subsets (blocks) of A with union A. Here I have defined partitions with a finite number of blocks, but partitions can also have an infinite number of blocks — the book gives the more general definition in definition 2.59 on p. 85.

(3) Lemma: Elements of an equivalence class have the same equivalence class. That is if b∈[a], then [a]=[b]. Proof: Let R be an equivalence relation on a set A, and let a∈A. Now let b∈[a]. We wish to show [a]=[b]. Let x∈[a]. Then bRa and xRa by definition of [a], and aRb by symmetry. Since xRa and aRb, then xRb by transitivity. So x∈[b]. This shows an arbitrary element of [a] is also in [b], so [a]⊆[b]. The same argument with a and b replacing each other shows that [b]⊆[a]. Therefore [a]=[b].

(4) Corollary: Let R be an equivalence relation on a set A, and let a,b∈A. If [a]∩[b]≠∅, then [a]=[b]. Proof: If [a]∩[b]≠∅, then there exists c ∈[a]∩[b]. In particular c∈[a] and c∈[b]. By the theorem [a]=[c] and [b]=[c]. By symmetry and transitivity of set equality, [a]=[b].

(5) Theorem: Let R be an equivalence relation on a set A. Then the set [A]R is a partition of A. Proof: (Nonempty blocks) Let [a]∈[A]R. Since aRa (by reflexivity), a∈[a], and [a] is nonempty. (Pairwise disjoint blocks) Now let [a],[b] be distinct equivalence classes of A under R. If [a] and [b] have an element in common, then they are equal by the corollary. Since they are distinct (not equal), then they have no elements in common. That is, the sets in [A]R are pairwise disjoint. (Block union is A) The union of all equivalence classes in [A]R can be written 
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. On the other hand, if a∈A, then a∈[a], so 
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. Therefore [A]R is a partition of A.

(6) This theorem is half of theorem 2.60 on p. 85. The other half states that given a partition P of a set A, there is an equivalence relation R on A such that [A]R=P. This equivalence relation is easy to contstruct: Just define aRb if and only if a and b are in the same block of P.

iv) Congruence Classes

(1) Let R be the equivalence relation congruence modulo 3 on the set of integers ℤ. Recall aRb if b​−a is a multiple of 3. A little reflection shows that [0]={…,−6,−3,0,3,6,…}={multiples of 3}, [1]={…,−5,−2,1,4,7,…}={integers one more than a multiple of 3}, and [2]={…,−4,−1,2,5,8,…}={integers two more than a multiple of 3}. Thus [A]R={[0],[1],[2]}. These three equivalence classes are the three congruence classes modulo three. Similarly there are four congruence classes modulo four, five congruence classes modulo five (the book gives this example), etc. Congruences are important in number theory and have been studied since ancient times.

(2) A tie to abstract algebra: One can define operations + and ∙ on the congruence classes modulo three by [a]+[b]=[a+b] and [a]∙[b]=[ab]. For instance [1]+[2]=[3]=[0] and [2]∙[2]=[4]=[1]. These operations are well-defined (though it takes a little work to show it), and [A]R with these two operations satisfies the field axioms. Thus {[0],[1],[2]} is a field with only three elements (a finite field). One can define these same operations on the congruence classes modulo an integer n≥2, getting a ring if n is composite and a field if n is prime.

(3) Let A be the set of people living at only one address in the US. Define a relation R on A by aRb if and only if a and b live in the same zip code. We showed above the R is an equivalence relation. What are its equivalence classes? They are not very exciting. For instance Reid Davis∈A and [Reid Davis] consists of all people who live in the 37922 zip code (and no other). This equivalence partitions people in the U.S. (with only one residence) according to the zip codes they live in. (Why, by the way, must we restrict A to people with only one residence?)

4) Functions

a) Let f ⊆A×B. Then f is, by definition, a relation on A and B. Suppose further that for every a∈A there is a unique b∈B such that (a,b)∈f. That is, for every a in A there is one and only one b in B such that afb. Then we call f a function from A to B (synonymously a mapping from A into B), and we write f:A→B. If a is in A and b is in B with afb (or, equivalently, (a,b)∈f), then it is customary to denote b by f(a), writing f(a)=b. Since f is a relation it has a domain, and the definition of function insures that the domain of f is A. We call B the codomain of f. The range of f still has its earlier meaning for relations. That is, the range of f is the subset of B that is related to something in A. In symbols range(f)={b∈B : (a,b)∈f for some a∈A}.

b) The common informal definition of function used in, say, an introductory calculus course is that a function f is a rule that assigns to every element of some set called the domain exactly one element in another set (usually called nothing at all). The definition above formalizes the calculus definition in a fashion suitable for writing proofs about functions. Many books define the graph of a function f to be the set {(a,b) : such that a∈A and f(a)=b}, which certainly tells us how to draw the graph of a function in the Cartesian coordinate system. This is, however, precisely our definition of the function itself.

c) More terminology and notation: Let f:A→B. If E⊆A, we define the image of E (under f) by f(E)={b : f(a)=b for some a∈A}={f(a) : a∈A}. Note that f(E) is a set, not a number. In fact f(E)⊆B. Using this terminology the range of f is f(A), the image of A under f. Under the same circumstances, if F ⊆ B we define the preimage of F (under f) by f –1(F)={a∈A : f(a)∈F}. Note again that f –1(F) is a set, not a number and that f –1(F)⊆A. Note also that this definition does not imply that an inverse function f –1 exists. The set f –1(F) always exists.

d) Examples

i) Let A={1,2,3,4,5} and B={a,b,c,d}. Define f⊆A×B by f={(1,a),(2,b),(3,a),(4,d),(5,d)}. Then the domain of f is {1,2,3,4,5}, the codomain is {a,b,c,d}, and the range is {a,b,d}. We note f(1)=a, f(2)=b, f(3)=a, f(4)=d, and f(5)=d. Also f({1,2,3})={a,b} and f({4,5})={d}. Similarly f –1({a})={1,3}, f –1({a,b})={1,2,3}, and f –1({c})=∅.

ii) Define f :ℝ→ℝ (the real numbers) by f(x)=x2. That is f={(x,x2) : x∈ℝ}. Then f has domain and codomain ℝ and range [0,∞) (using interval notation). As examples of images and preimages we see f([2,5])=[4,25] while f −1([4,25])=[−5,−2]∪[2,5].

iii) Let A be the set of people in the U.S. with only one residence, and Z be the set of zip codes. Define f :A→Z by f(a)=the zip code where person a lives. Then f(Reid Davis)=37922 and f –1({37922})={people who live in zip code 37922}. Note that we must find the preimage of the set {37922}, not the preimage of the element 37922 because f –1(37922) is not defined (and indeed will not be defined).

e) Composition of Functions

i) Suppose f :A→B and g :B→C. Since f and g are relations, we can compose them to get a new relation g◦f on A and C. It is easy to show that g◦f :A→C and to show that (g◦f)(a)=g(f(a)). Proof: Let a∈A. Recall that (a,c)∈g◦f if and only if there exists b∈B such that (a,b)∈f and (b,c)∈g. Since f is a function, however, there is a unique b∈B such that (a,b)∈f, namely b=f(a). Similarly, since g is a function there is a unique c∈C such that (b,c)∈g, namely c=g(b)=g(f(a)). Thus a(g◦f)(g(f(a)), and a is not related to any other element of C. Since g◦f relates each element of A to exactly one element of C, g◦f is a function from A into C. Further, using more common notation the proposition a(g◦f)(g(f(a)) becomes (g◦f)(a)=g(f(a)).

ii) Here is a diagram that helps show the relationship between f, g, and their composition;






iii) The theorem we proved before the diagram is Theorem 2.65 in the text. The book’s proof appears to be incorrect or at least badly written, so I suggest you avoid it.

iv) Part b. of the theorem makes it easy to find a formula for the composition of functions defined by formulas. For instance let f :ℝ→ℝ by f(x)=x2 and g :ℝ→ℝ by g(x)=3x+1. Then (g◦f)(x)=g(f(x))=g(x2)=3x2+1. Since all three sets are the same we can compose in the opposite order to get (f◦g)(x)=f(g(x))=f(3x+1)=(3x+1)2.

v) Note from the previous example that composition is not commutative. On the other hand, composition of functions is associative since composition of relations is.

f) Special Properties of Functions

i) Let f :A→B, and suppose f has the property that it never maps two different elements of A to the same element of B. That is, for all x,y∈A if x≠y, then f(x)≠f(y). Then we say f is one-to-one or injective and we call f an injection. One can take the contrapositive of this definition to get an alternative (and equivalent) definition: for all x,y∈A, if f(x)=f(y), then x=y. This alternative form usually leads to simpler, more elegant proofs.

ii) Let f :A→B. If f(A)=B, then f is onto or surjective, and f is an injection. Equivalently, a function is surjective if its range equals its codomain. Note that one must be careful with the words into and onto in describing functions. To say f is a function from A into B or f maps A into B simply says that f is a function. To say f is a function from A onto B or f maps A onto B says that f is a surjection.

iii) A function that is both injective and surjective is a one-to-one correspondence or a bijection. A bijection from a set onto itself is a permutation.

iv) Injectivity and surjectivity are independent of each other in the sense that a function can possess one or both qualities or nether. An easy way to illustrate this is to use small sets for the domain and codomain, listing elements of the domain on the left and elements of the codomain on the right, drawing an arrow from a on the left to b on the right if f(a)=b.

v) Finite Examples

(1) Injective but not surjective


(2) Surjective but not injective


(3) Neither injective nor surjective


(4) Bijective

vi) In explaining these concepts to your students, you may also find it helpful to use familiar continuous functions defined by formulas and discuss them in terms of their graphs. Suppose f :ℝ→ℝ. Then f is injective if there are never two different x-values that yield the same y-value (that is, a horizontal line never intersects the graph of an injective function in more that one place). Further, f is surjective if the graph has a point on the level of every point on the y-axis. Bijective functions satisfy both these criteria.

vii) Examples (all functions are f :ℝ→ℝ)
(1) Let f(x)=x2. Then f is neither injective nor surjective. It is not injective since, for instance f(2)=f(−2)=4. It is not surjective since there is no x such that f(x)=−1. Visually one notes that the graph of f is a parabola that fails the horizontal line test above the x-axis and that never dips below the x-axis at all. Note that such counterexamples are the standard way to show a function is not injective or not surjective.
(2) [Note, however that the domain and codomain are crucial. If one defines f :[0,∞)→[0,∞) by f(x)=x2, then f is both injective and surjective — a bijection! Do you see why?]

(3) Familiar injective functions that are not surjective are often hard for students to think of. Probably the easiest examples are f(x)=ex and f(x)=ln(x) — the natural exponential and logarithmic functions (of course other exponentials and logarithms also work). You might think of the graphs of these functions to see that they are injective but not surjective.

(4) Surjective functions that are not injective are a little easier. Any odd-degree polynomial with more than one zero will work since the x-axis itself intersects the graph more than once. Probably the easiest example is f(x)=x(x-1)(x+1)=x3−x.

(5) [Note, by the way, that no polynomial of even degree is injective or surjective and that every polynomial of odd degree is surjective. Some polynomials of odd degree are also injective, like f(x)=x3.]

(6) Finally the easiest example of a bijective function is a non-horizontal linear function. For instance, let f(x)=2x. In this case it is easy to prove that it is bijective: (Injective) Suppose f(x)=f(y). Then 2x=2y, so x=y. Therefore f is injective. (Surjective) Let z∈ℝ. We must show there is an x such that f(x)=z. If there is such an x, then f(x)=2x, so 2x=z. This means x=z/2 must work. We check by noting f(z/2)=2(z/2)=z. Therefore every z in ℝ is the image of some x (namely z/2) under the function f. Therefore f is surjective. This proof is a standard model for all proofs of injectivity or surjectivity.
g) Inverse functions

i) Since f :A→B is a relation, the inverse relation f −1 exists. It may or may not, however, be a function. The test is quite simple, however, as Theorem 2.71 states. Namely f −1 is a function if and only if f is bijective. In that case, f −1 :A→B and is also bijective.

ii) The behavior of an inverse function is simple. If f(a)=b, then f −1(b)=a. It is then easy to show that f(f −1(b))=b and f −1(f(a))=a for all a∈A and b∈B.

iii) Finding inverse functions of functions given by formulas is not generally easy. It is, however, easy to find the inverse of a linear function. The book gives a standard example in example 2.73. Problems like this commonly appear in first-semester calculus as a lead-in to the derivative of inverse trigonometric functions or to discussing the natural exponential and logarithmic functions as inverses of each other.

h) Identity functions: If A is a set, then one can always define that identity function I :A→A, by I(a)=a. This function is blatantly bijective and surprisingly useful. As the book notes in Theorem 2.75, I acts like an identity under composition.

i) Theorem 2.76 gives four useful results about the interaction of composition with injectivity, surjectivity, and inversion. Namely

i) The composition of injective functions is injective.

ii) The composition of surjective functions is surjective.

iii) The composition of bijective functions is bijective.

iv) The inverse of a composition equals the composition of the inverses.

j) Proofs

i) Part a. of Theorem 2.76 is homework problem #39. Here I prove part b. as an example: Theorem. If g :A→B and f :B→C are surjective, then f◦g is surjective. Proof: We must show that for every c∈C there is an a∈A such that (f◦g)(a)=c. Let c∈C. Since f is surjective, there exists b∈B such that f(b)=c. Since g is surjective, there exists a∈A such that g(a)=b. Then (f◦g)(a)=f(g(a))=f(b)=c. Therefore f◦g is surjective.

ii) Homework problems 27, 29, 31, and 33 are proofs (or counterexamples) quite similar to each other and are very good problems. Here are problems #26 and #28 as examples:

(1) #26 Let f :A→B with A1,A2⊆A. If A1⊆A2, then f(A1)⊆f(A2). Proof: Note that we must show that an arbitrary element of f(A1) is in f(A2). So let b∈f(A1). By definition of image, there exists a∈A1 such that f(a)=b. But A1⊆A2, so a∈A2. Since f(a)=b, we have b∈f(A2). Thus every element of f(A1) is in f(A2). That is, f(A1)⊆f(A2).

(2) #28 Let f :A→B with A1,A2⊆A. Then f(A1∪A2)=f(A1)∪f(A2). Proof: We proceed by showing each set is a subset of the other. (⊆) Let b∈f(A1∪A2). Then there exists a∈A1∪A2 with f(a)=b. Then a∈A1 or a∈A2, which is to say b∈f(A1) or b∈f(A2). By definition of union, b∈f(A1)∪f(A2). So f(A1∪A2)⊆f(A1)∪f(A2). (⊇) Let b∈f(A1)∪f(A2). By definition of union, b∈f(A1) or b∈f(A2). So there exists a∈A1 or a∈A2 such that f(a)=b. By definition of union,  a∈A1∪A2 so b∈f(A1∪A2). Therefore f(A1∪A2)⊇f(A1)∪f(A2). Since each set is included in the other, we have f(A1∪A2)=f(A1)∪f(A2), as desired.
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