Math 504, Lecture 8, Spring 2004

introduction to graph theory

1) Introduction

a) The three sections we are covering tonight have in common that they mostly contain definitions. Graph theory suffers from a large number of definitions that mathematicians use inconsistently. For instance, what some mathematicians call a graph, others call a simple graph. What some mathematicians call a multigraph, other just call a graph. Some mathematicians call a graph labeled if the vertices are labeled, while others mean that the edges are labeled.

b)  Why are the definitions so confused in graph theory? I suspect it is simply a matter of convenience. People who want to write about simple graphs make their lives easier by just calling them graphs. People who want to write about multigraphs call them graphs. The caveat in all of this is clear: when you start to read a new book on graph theory read the definitions carefully to make sure of the ground rules.

2) Graphs

a) A graph, G, comprises a set V of vertices and a set E of edges. The vertex set can be anything, but is most commonly a collection of letters or numbers. The set of edges is a set of doubleton subsets of V. That is E⊆{{a,b}:a,b∈V and a≠b}. We denote the graph by G(V,E).

b) If G(V,E) is a graph and {a,b}∈E, then we say vertices a and b are adjacent and the edge {a,b} joins them or connects them or is incident on them. We call a and b the endpoints of the edge. Two edges that share one vertex, such as {a,b} and {b,c} with a≠c, are adjacent to each other.

c) Normally we think of a graph as a drawing. A little reflection shows that the definition above is a formalization of this intuition about graphs. We think of a graph comprising dots (vertices) connected by line segments or curves (edges). We give every dot a label and form the vertex set V out of the labels. If there is a curve connecting dots a and b, we include the edge {a,b} in E.

d) Examples

i) Let V={a,b,c,d} and E={{a,b},{a,c},{b,c},{c,d}}

[image: image1.wmf] 

 

 

a

 

 

a

 

 

 

 

 

a

 

 

a

 

 

 


ii) Let V={a,b,c,d} and E={{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}}. This is called the complete graph on four vertices, denoted K4.
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iii) Let V={a,b,c,d} and E=∅.

e) Our definition of graph does not allow an edge to join a vertex to itself. Such an edge is called a loop, and some definitions of graph allow them. Our text refers to such a structure as a graph with loops (clever, huh?), which is a straightforward name but not common as far as I know. Some definitions of graph allow for multiple edges between the same two vertices. Our book calls this structure a multigraph (which is a common and helpful usage in that it makes E a multiset rather than a set). Our book calls a multigraph with loops a pseudograph. I think this terminology may be standard, but I am not a graph theorist.

f) History: Texts typically trace the origin of graph theory to the Königsberg Bridge Problem and its solution by Leonhard Euler (the book gives this solution a date of 1736). The book describes the problem and the history behind it. You may recall that Euler (pronounced “oiler”) was a brilliant mathematician and perhaps the most prolific of history, remaining productive into his 70’s or 80’s despite going blind.

g) On p. 229 the book mentions the application of graphs to printed circuit and microchip design. Graphs seem an intuitively natural way to model many situations in the Creation (connections of wires/leads, logistics/transportation problems, pipelines between points with known capacities, family trees, organizational charts, among many more). This suggests why graph theory has grown so dramatically in the past century.

h) The degree of a vertex is the number of edges incident on the vertex. That is, if G(V,E) is a graph and a∈V, then degree(a)=|{x:{a,x}∈E}|. Put another way, the degree of a vertex is the number of vertices adjacent to it. If a vertex has no adjacent vertices (degree 0), then it is isolated.

i) Two theorems about degree

i) (6.7) The sum of the degrees of the vertices of a graph is even. Proof: Each edge joins two vertices. Thus adding up the degrees of the vertices is equivalent to counting all the edges twice. Therefore the sum of the degrees is even. In fact it is twice the number of edges.

ii) (6.8) Every graph has an even number of vertices of odd degree. Proof: Otherwise the sum of the degrees would be odd.

j) A graph G′(V′,E′) is a subgraph of the graph G(V,E) if V′⊆V and E′⊆E. Note that this does require G′(V′,E′) to be a graph, so one cannot form a subgraph of arbitrary subsets of V and E. The second graph below is a subset of the first.
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k) The notion of a path in a graph is intuitively clear but a little hard to pin down formally. Suppose G(V,E) is a graph with vertices v0,v1,…,vk (not necessarily distinct) and edges e1,e2,…,ek (not necessarily distinct) in which edge ei={vi-1,vi} for i=1,…,k. Then the alternating sequence of vertices and edges v0e1v1e2v2…ekvk is a path from v0 to vk of length k (note that the length is the number of edges, not vertices). Unless we work with multigraphs the listing of the edges is redundant, so we may speak more simply of the path as v0v1v2…vk. This definition allows for incredibly knotty, repetitious paths. If we want to rule out that possibility, we can speak of simple paths, which are paths in which no vertices (and thus no edges) are repeated.

l) Example: In the following diagram the red edges show a simple path of length three from a to e. The path is acde. Of course this could also be the non-simple path acdcacacdede of length 11.
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m) Intuitively a graph is connected if it has no parts that are isolated from each other, if you can get from each part to every other part. Formally we say a graph is connected if there exists a path between every pair of distinct vertices. Clearly this is equivalent to saying there is a simple path between every pair of distinct vertices. The graph just given is connected, but the following one is not since you cannot, for instance, get from a to d.
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n) A component is a maximal connected subgraph. For instance the previous graph has two components, one consisting of a,b,c and their edges, the other consisting of d,e and their edge. Formally a subgraph G′ of graph G is a component if G′ is connected (and nonempty) and every other connected subgraph of G that contains G′ equals G′ (this second condition is what we mean by maximal in this context).
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A cycle is a nontrivial (length>0) path whose initial and terminal vertices are the same and which has no repeated edges. If no vertex is repeated except that the initial vertex equals the terminal one, then the cycle is simple. An n-cycle is a simple cycle of length n. In the following graph, the simple cycle acbda (in red) is a 4‑cycle while adecdba is a non-simple cycle (no edges repeat, but the vertex d does)

p) A graph in which an edge joins every pair of distinct vertices is a complete graph. We denote by Kn the complete graph on n vertices. A bipartite (two-part) graph G(V,E) is one in which we can partition V into two subsets A and B such that every edge in E joins a vertex in A to a vertex in B. If an edge joins every vertex in A to every vertex in B, then G is a complete bipartite graph. In that case if |A|=m and |B|=n, then we denote the complete bipartite graph by Km,n. The book shows examples of these graphs in the figures at the bottom of page 231.

q) Bipartite graphs arise naturally in many contexts. For instance imagine that we make a list of students on the left edge of a page, make a list of courses on the right edge of a page, and then draw lines between students and the courses they have taken. The result is a bipartite graph. Similarly if we draw the graph of a relation from a set A to a set B, then the result is a bipartite graph.

3) Directed Graphs (digraphs)

a) A directed graph (digraph, for short) G consists of a set V of vertices and a set E of directed edges. A directed edge is an ordered pair of elements of V. Put another way, the pair G(V,E) with E⊆V×V is a digraph.

b) Differences from graphs: Digraphs allow for loops of the form (a,a), It is also possible to have two edges (a,b) and (b,a) between vertices a and b. We take the ordering of the pairs in E to give each edge a direction: namely the edge (a,b) goes from a to b. We call a the initial vertex and b the terminal vertex of the edge. When we draw the digraph, we draw the edge (a,b) as an arrow from a to b.

c) Example: Let V={a,b,c,d} and E={(a,b),(a,c),(b,a),(c,c),(d,c)}
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d) The outdegree of a vertex is the number of edges that initiate at a. The indegree of a is the number of edges that terminate at a. A vertex with indegree 0 is a source, and a vertex with outdegree 0 is a sink. In the above digraph outdeg(a)=2 and indeg(a)=1. Also c is a sink and d is a source.

e) The book goes through some technicalities on directed multigraphs and digraphs. I believe they are irrelevant to us, and I suggest you ignore them. They are another example of the annoying technicalities that easily arise in a broad, shallow introduction to graph theory.

f) Directed subgraphs (subdigraphs?) have the natural definition. Directed paths, however, are slightly different since one may travel only in the direction the edges have. For instance if abcd is a directed path, then there must be an edge from a to b (not merely an edge between a and b).

g) Sometimes it is useful to “remove the arrowheads” to turn a digraph into a graph. In the process we must remove all loops and duplicate edges (i.e., edges going both from a to b and b to a). Formally we can do this for a digraph G(V,E) by letting E′=E–{(a,a):a∈V} (this removes the loops) and then defining Es={{a,b}:(a,b)∈E′} (this turns directed edges into edges). The graph Gs(V,Es) is the graph we want and is called the underlying graph of the digraph G.

h) A digraph is connected if its underlying graph is connected. It is strongly connected if there is a directed path from every vertex to every other vertex. As an example we see below a digraph and its underlying graph. Clearly the digraph is connected. It is not strongly connected, however, since for instance there is no directed path from a to d (or even from c to d).
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4) Trees

a) A tree is a connected graph with no cycles. A forest is a graph whose components are trees. An example appears below. Trees come up in many contexts: tournament brackets, family trees, organizational charts, and decision trees, being a few examples.
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A directed tree is a digraph whose underlying graph is a tree and which has no loops and no pairs of vertices joined in both directions. These last two conditions mean that if we interpret a directed tree as a relation, it is irreflexive and asymmetric. Here is an example.

c) Theorem: A tree T(V,E) with finite vertex set and at least one edge has at least two leaves (a leaf is a vertex with degree one). Proof: Fix a vertex a that is the endpoint of some edge. Move from a to the adjacent vertex along the edge. If that vertex has no adjacent vertices then it has degree one, so stop. If not, move along another edge to another vertex. Continue building a path in this fashion until you reach a vertex with no adjacent vertices besides the one you just came from. This is sure to happen because V is finite and you never use the same vertex twice in the path (since T is a tree). This produces one leaf. Now return to a. If it is a leaf, then you are done. If not, move along a different edge than the one at the first step above. Continue extending the path in that direction until you reach a leaf (which is sure to happen by the argument above).

d) In the following tree the red vertices are leaves. We now know every finite tree with an edge has a least two leaves. The other vertices are internal vertices.
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e) Theorem (6.37): Given vertices a and b in a tree T(V,E), there is a unique simple path from a to b. Proof: Trees are connected, so there is a simple path from a to b. The book gives a nice example of using the contrapositive to prove the rest of the theorem.

f) Theorem (6.38): Given a graph G(V,E) such that every pair of vertices is joined by a unique simple path, then G is a tree. This is the converse of Theorem 6.37. Proof: Since a simple path joins every pair of points, the graph is connected. Now suppose G has a cycle abc…a. Then ba and bc…a are distinct simple paths from b to a. This contradicts uniqueness of simple paths, so G cannot possess such a cycle. This makes G a tree.

g) Sometimes it is useful to distinguish one vertex of a tree and call it the root of the tree. For instance we might, for whatever reasons, take the tree above and declare the red vertex to be its root. In that case we often redraw the tree to let it all “hang down” from the root (or invert this picture so that it all “grows up” from the root, which suits the metaphor better)
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h) It is sometimes useful to turn a rooted tree into a rooted directed tree T′ by directing every edge away from the root.
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i) Rooted trees and their derived rooted directed trees have some useful terminology, much of which is suggested by family trees. The level of a vertex is the length of the path from it to the root. The height of the tree is the length of the longest path from a leaf to the root. If there is a directed edge in T′ from a to b, then a is the parent of b and b is a child of a. If there are directed edges in T′ from a to b and c, then b and c are siblings. If there is a directed path from a to b, then a is an ancestor of b and b is a descendant of a.

j) Our book describes a directed tree as binary if no vertex has outdegree over 2. It is more common to call a tree binary if no vertex has degree over 3. (In general a tree is m-ary if no vertex has degree over m+1. Our book calls a directed tree m-ary if no vertex has outdegree over m.) The directed rooted tree above is 4-ary (I think the word is quaternary) since it has a vertex with outdegree 4. In a rooted binary tree (hanging down or growing up) one can describe each child vertex as the left child or right child of its parent.

k) Theorem (6.41): A tree on n vertices has n–1 edges. Proof: Let T be a tree with n vertices. Make it rooted. Then every edge establishes a parent-child relationship between two vertices. Every child has exactly one parent, and every vertex except the root is a child. Therefore there is exactly one edge for each vertex but one. This means there are n–1 edges.

l) Theorem (6.42): If G(V,E) is a connected graph with n vertices and n–1 edges is a tree. This is the converse of theorem 6.41. Proof: Suppose G is as in the statement of the theorem, and suppose G has a cycle. Then we can remove an edge from the cycle without disconnecting G (see the next slide for why). If this makes G a tree, then stop. If not, there is still a cycle, so we can remove another edge without disconnecting G. Continue the process until the remaining graph is a tree. It still has n vertices, so it has n–1 edges by a prior theorem. This is a contradiction since G had n–1 vertices to start with. Therefore G has no cycle and is thus a tree.

m) (Why can we remove an edge from a cycle without disconnecting the graph? Let a and b be vertices. There is a simple path from a to b. If the path involves no edges in the cycle, then the path from a to be is unchanged. If it involves edges in the cycle, let x and y be the first and last vertices in the cycle that are part of the path from a to b. So there is a path from a to x and a path from y to b. Since x and y are part of a cycle, there are at least simple two paths from x to y. If we remove an edge from the cycle, at least one of the paths still remains. Thus there is still a simple path from a to b.)

n) If G(V,E) is a graph and T(V,F) is a subgraph of G and is a tree, then T is a spanning tree of G. That is, T is a tree that includes every vertex of G and has only edges to be found in G. Using the procedure in the previous paragraph (remove edges from cycles until only a tree remains), we can easily prove that every connected graph has a spanning tree (theorem 6.43).
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