Math 504, Lecture 12, Spring 2004

Pigeons, integer equations, and congruence

1) A final topic in combinatorics: The Pigeonhole Principle

a) The basic Pigeonhole Principle: If there are n+1 pigeons in n pigeonholes, then at least one hole has at least two pigeons. Proof: The contrapositive is trivial: The sum of n integers no larger than 1 can be no larger then n.

b) Examples: This trivial theorem leads to results that are sometimes astonishing and sometimes even useful. I have heard that the corrected proof of Fermat’s Last Theorem (from 1994 by Andrew Wiles and R. Taylor) depends on the Pigeonhole Principle to close some of the gaps from Wiles’s original proof.

i) If there are 13 students in a class, then at least two were born in the same month.

ii) In a group of 367 people, at least two share a birthday. Note that this is not a probabilistic statement. It takes only 23 people to have better than a 50% chance of two people sharing a birthday, but it takes 367 to get certainty by the Pigeonhole Principle.

iii) In every set of 6 integers at least two leave the same remainder when divided by 5. Equivalently, at least two have a difference that is a multiple of 5. Equivalently at least two are congruent modulo 5. Why? There are only 5 possible remainders when dividing by 5.

iv) If m and n are integers with m>n, then there is no injection f:[m]→[n]. Why? Think of the elements of [n] as pigeonholes and the elements of [m] as pigeons.

c) A more general Pigeonhole Principle: If m pigeons roost in n pigeonholes, then at least one pigeonhole has at least ceil(m/n) pigeons, where ceil(x) is the ceiling function. Proof: Again prove the contrapositive. If each of n pigeonholes has fewer then m/n pigeons, then the total number of pigeons is less than n(m/n)=m. So at least one pigeonhole has at least m/n pigeons. The number must also be an integer, so it must be at least the smallest integer greater than or equal to m/n, namely ceil(m/n).

i) Examples

(1) In a group of 11 people, there are at least 6 men or 6 women.

(2) In a group of 1099 people, at least four share a birthday.

(3) Given 51 integers, at least 11 all leave the same remainder when divided by 5 (and thus the difference of any two of them is a multiple of 5).

d) Another generalization

i) The book’s theorem 8.83b is another generalization of the Pigeonhole Principle. You may find the technical statement of it in the book helpful, but again the contrapositive seems simpler. It says, in essence, if I add up n nonnegative integers with the first less than m1, the second less than m2, etc., then the sum is no more than m1+m2+…+mn–n. This is easier to illustrate than to state.

ii) Example: A bowl has 4 red, 8 yellow, 7 brown, and 13 green M&M’s. How many must I take to be sure of getting all of at least one color? The most I could have without having all of one color is 3 red, 7 yellow, 6 brown, and 12 green, which makes 28. So if I take 29 M&M’s then I have all of at least one color.

e) There are many striking applications of the Pigeonhole Principle. The book gives two in examples 8.82 and 8.85. The first shows that a subset of size n+1 from the set [2n] always contains two integers such that one divides the other. The second shows that in a sequence of n2+1 integers, there is always a monotonic (increasing or decreasing) subsequence of length at least n+1.

f) There is an infinite collection of examples like the following: In the month of April, you play at least one game of Freecell (solitaire) on your computer every day. At the end of the month you have played 45 games altogether. Show that during some stretch of consecutive days you played exactly 14 games.

g) There are also infinite versions of the Pigeonhole Principle. For instance, if infinitely many pigeons roost in finitely many pigeonholes, at least one pigeonhole has infinitely many pigeons.

h) The book continues to Ramsey Theory, a generalization of the Pigeonhole Principle. You do not need to read this, but it is a fascinating topic, producing such results as a theorem that in any group of six people, there are three who are all mutual acquaintances or three who have never met each other.

2) Integer Solutions of Linear Equations in Two Variables

a) We usually think of a linear equation in two variables, ax+by=c, as having an infinite collection of solutions, which we represent as the line with equation ax+by=c. The context for these thoughts is that x and y are real variables. If, instead, they are integer variables, the situation is quite different, primarily because the real numbers are a field and the integers are not.

b) For example, it is perfectly clear that 6x+14y=9 has no integer solutions since 6x+14y is always even. Similarly, 10x+15y=93 has no integer solutions since 10x+15y is always a multiple of 5. Since ax+by will always be a multiple of any divisor of a and b, then in particular it will be a multiple of gcd(a,b). Thus ax+by=c has a solution only if c is a multiple of gcd(a,b) (that is, if gcd(a,b)|c). This condition is also sufficient since ax+by=gcd(a,b) always has a solution, as we have seen before.

c) So the situation is quite simple. Let d=gcd(a,b). If c is not a multiple of d, then ax+by=c has no solution. If u and v are integers such that au+bv=d (you can use the Euclidean Algorithm backwards to get such u and v), and if c=md, then ax+by=c has the solution x=mu, y=mv. Adding b/d to x and subtracting a/d from y produces another solution, so the general solution is x=mu+(b/d)t, y=mv-(a/d)t, for t an integer.

d) Example: Solve 10x+25y=-45. Since gcd(10,25)=5 and 5|-45, there is a solution. We note that 10(3)+25(-1)=5 (so u=3, v=-1 yields au+bv=d). Since –45=-9(5), we have a solution of x=-9(3)=-27 and y=-9(-1)=9 (and this checks out since we see 10(-27)+25(9)=-45). Since b/d=25/5=5 and a/d=10/5=2, the general solution to 10x+25y=-45 is x=-27+5t and y=9-2t. Of course it would simplify the whole situation if we divided the original equation through by d to get 2x+5y=-9 (which, of course, has the same solution).

3) Solving Linear Congruences

a) A linear congruence (in one variable) is analogous to a linear equation (in one variable. For instance, we might want to solve the congruence 3x≡1 (mod 5) instead of the equation 3x=1. Of course because of modular arithmetic, the linear congruence may have a solution (x=2 in this example) when the linear equation has no (integer) solution. On the other hand, not all linear congruences have solutions, 2x≡3 (mod 4) being an example (why?).

b) Note that the linear congruence 3x≡1 (mod 5) having a solution is equivalent to saying 3x–1 is a multiple of 5. This is equivalent to saying 3x–1=5y  (or, more clearly, 3x–5y=1) has an integer solution. More generally, ax≡c (mod m) having a solution is equivalent to ax–my=c having an integer solution, which happens if and only if gcd(a,m)|c. Note that this always happens if gcd(a,m)=1 (i.e., if a and m are relatively prime).

c) From the previous section, if ax≡c (mod m) has a solution x=x0, then x=x0+t(m/d) is the set of all solutions, where d=gcd(a,m) and t ranges through the integers. Theorem 10.7 shows us that there are d distinct solutions modulo m. We get these by looking at the primary residues (remainders when divided by m) of x=x0+t(m/d).

d) Example: Solve 28x≡56 (mod 49).

e) Theorem 10.5 on p.393 gives some useful properties of congruences.

i) Part a: Sums and products preserve congruence.

ii) Part b: Cancellation of common factors (division) preserves congruence if the common factor (divisor) is relatively prime to the modulus.

iii) Part c: Powers preserve congruence (this follows from part a.)

iv) Part d: Numbers congruent modulo a product are congruent modulo each factor of the product.

v) Part e seems obscure.

vi) Part f: Number congruent modulo two relatively prime numbers are congruent modulo the product of those numbers.

4) The Chinese Remainder Theorem

a) The Chinese Remainder Theorem (CRT) tells us what sort of solutions to expect to a broad class of systems of linear congruences (cf. systems of linear equations). It then goes on to tell us how to find those solutions. Qin Jiushao (c. 1202—1261) of China published this solution in 1247; the theorem’s name honors his accomplishment. You can find Qin’s solution in section 6.3.2 of A History of Mathematics 2e by Victor J. Katz, which also shows Qin’s attractive counting board implementation of the Euclidean Algorithm. We will see the CRT for the integers (where Qin solved it), but it holds in a much broader algebraic setting.

b) The Chinese Remainder Theorem (special case for three congruences, part I). Suppose a, b, c, m, n, p are integers with m, n, and p pairwise relatively prime. Then the system of linear congruences x≡a (mod m), x≡b (mod n), and x≡c (mod p) has a unique solution modulo mnp.

c) Example: Let x be my age. Then x≡1 (mod 2), x≡1 (mod 3), and x≡3 (mod 5). Find x. If we starting going through values of x that satisfy x≡3 (mod 5) (x=3,8,13,18,…), we quickly find that x=13 satisfies all three congruences, but 13 is a bit young for a college professor. By the CRT, this solution is unique modulo (2)(3)(5)=30, so other possibilities for x are 43, 73, 103, …. If you have met me, you know that x=43 must be correct.

d) The Chinese Remainder Theorem (special case for three congruences, part II). Suppose a, b, c, m, n, p are integers with m, n, and p pairwise relatively prime. Then the unique (modulo mnp) solution to the system of linear congruences x≡a (mod m), x≡b (mod n), and x≡c (mod p) is given by x=Mt+Nu+Pv, where M=np, N=mp, and P=mn and Mt≡a (mod m), Nu≡b (mod n), and Pv≡c (mod p).

e) Example: Let us apply this algorithm to the above system Then x≡1 (mod 2), x≡1 (mod 3), and x≡3 (mod 5). Here m=2, n=3, and p=5, so we want to solve 15t≡1 (mod 2), 10u≡1 (mod 3), and 6v≡3 (mod 5). Then x=15t+10u+6v will be the solution (Why? This is the key to why the CRT is true.). It is easy to find t=1, u=1, and v=3, giving x=15(1)+10(1)+6(3)=43. This solution is unique modulo 30, and it is typical to give the primary residue as the value of x. Thus we would more commonly write x=[[43]]30=13.

f) In Theorem 10.11, the book shows the general statement of the CRT for systems of fewer or more than three linear congruences. Theorem 10.14 then generalizes to systems in which the moduli are not necessarily relatively prime.

































































































































































































