Math 504, Lecture 13, Spring 2004

Advanced counting

1) Balls in Urns

a) A classical way of characterizing a large collection of common counting problems is to find an equivalent problem involving the placing of n balls in k urns (our book uses “objects” and “boxes”). The noted mathematician Paul Halmos (b. 1916 in Hungary), who was one of the leaders in raising combinatorics to prominence in the 20th century, said that combinatorics is, in fact, about nothing more than placing balls in urns. Most of the counting problems we have already solved are expressible in these terms.

b) Placing n labeled balls into k labeled urns

i) Without restriction

(1) Number of possibilities: kn
(2) Equivalent Problems

(a) Functions from an n-set into a k-set

(b) Sequences of length n on a k-set

(c) Words of length n on an alphabet of k letters

ii) So that no urn gets more than one ball

(1) Number of possibilities: P(n,k)

(2) Equivalent Problems

(a) Injective functions from an n-set to a k-set

(b) Permutations of n objects taken k at a time

(c) Words of length n on an alphabet of k letters with no letter repeated

iii) So that urn i gets ni balls, where n1+n2+…+nk=n.

(1) Number of possibilities 
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(2) Equivalent Problems

(a) Visually distinct arrangements of n1 A’s, n2 B’s, …, nk K’s.

(b) Visually distinct arrangements of k different sorts of objects such that there are n1 of the first sort, n2 of the second sort, etc.

iv) So that every urn gets at least one ball (we have not looked at this surprisingly difficult problem yet)

(1) Number of possibilities: I am not aware of a standard notation for this number. Carl Wagner, who is my primary source of combinatorial background uses the notation ((n,k). It turns out that 
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, a fact that is not nearly obvious.

(2) Equivalent Problems

(a) Surjective functions from an n-set to a k-set

(b) Ways in which n horses can finish a race so that, counting ties, there are exactly k different places.

c) Placing n unlabeled (indistinguishable) balls into k labeled urns

i) Without Restriction

(1) Number of possibilities: C(n–k+1,k–1)=C(n–k+1,n)

(2) Equivalent Problems

(a) The Gumdrop Problem without restriction

(b) Choosing n objects from k different sorts with repetition allowed (objects of a given sort are indistinguishable from each other)

(c) Constructing a multiset of cardinality n from k different objects.

ii) So that no urn gets more than one ball

(1) Number of possibilities: C(k,n)

(2) Equivalent Problems

(a) n-subsets of a k-set

(b) Placement of k labeled balls into 2 labeled urns so that the first gets exactly n balls

iii) So that every urn gets at least one ball

(1) Number of possibilities: C(n–1,k–1)

(2) Equivalent Problems

(a) The Gumdrop Problem in which each child must get a gumdrop

(b) Choosing n objects from k different sorts with repetition allowed (objects of a given sort are indistinguishable from each other) so that at least one of each kind appears

(c) Constructing a multiset of cardinality n from k different objects so that each object appears at least once

d) Placing n labeled balls into k unlabeled (indistinguishable) urns

i) So that every urn gets at least one ball

(1) Number of possibilities S2(n,k)=((n,k)/k!, where ( is given above. These numbers are called Stirling Numbers of the Second Kind after James Stirling (1692​–1770). Other common notations are 
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 (which our book uses) and 
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 (reminiscent of binomial coefficients). These numbers are probably the most important combinatorial numbers after the binomial coefficients. They are the main topic of section 12.1.

(2) Equivalent Problems

(a) Partitions of an n-set with k blocks

(b) Equivalence relations on an n-set with k equivalence classes

ii) Without Restriction

(1) Number of possibilities S2(n,0)+S2(n,1)+…+S​2(n,k). If k=n, then this is called the nth Bell Number and denoted B(n). Otherwise it has no name or notation.

(2) Equivalent Problems

(a) Partitions of an n-set with up to k-blocks (B(n) counts the number of partitions of an n-set)

(b) Equivalence relations of an n-set with up to k equivalence classes (B(n) counts the number of equivalence relations on an n-set).

2) Stirling Numbers of the Second Kind

a) The numbers S2(n,k) are called the Stirling Numbers of the Second Kind. You can find a nice page about them at http://mathforum.org/advanced/robertd/sitrling2.html. The usual definition of S2(n,k) is that it counts the number of partitions of an n-set into k blocks. For instance, let’s count the partitions of {1,2,3,4} into two blocks: {{1,2,3},{4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{2,3,4},{1}}, {{1,2},{3,4}}, {{1,3},{2,4}},{{1,4},{2,3}}. Therefore S2(4,2)=7.

b) Now evaluate S2(4,3).

c) Intuitively S2(0,0)=1. If n>0, then S2(n,0)=0, S2(n,1)=1, and S2(n,n)=1. (Why?).

d) Theorem: For n,k>1, S2(n,k)=S2(n–1,k–1)+k∙S2(n–1,k). Proof: Count the partitions of [n] into k blocks according to whether 1 is in a block by itself. If so, then there are S2(n–1,k–1) ways to partition the remaining elements of [n]. If not, then there are S2(n–1,k) ways to partition the remaining elements of [n] and then k ways to choose the block to place 1 in.

e) There is also a formula for S​2(n,k), namely 
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, but for many purposes the recurrence relation is easier to use, just as it is often easier to use Pascal’s Triangle rather than the formula to get values of binomial coefficients.
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	5
	
	1
	15
	25
	10
	1
	
	
	
	
	

	
	6
	
	1
	31
	90
	65
	15
	1
	
	
	
	

	
	7
	
	1
	63
	301
	350
	140
	21
	1
	
	
	

	
	8
	
	1
	127
	966
	1701
	1050
	266
	28
	1
	
	

	
	9
	
	1
	255
	3025
	7770
	6951
	2646
	462
	36
	1
	

	
	10
	
	1
	511
	9330
	34105
	42525
	22827
	5880
	750
	45
	1


f) Examples

i) You have 8 students in a class, and you want to divide them up into 5 groups (perhaps groups of 1) to work on a project. In how many ways can you do this? Answer: S2(8,5)=1050.

ii) How many equivalence relations are there on the set {a,b,c,d,e}? Answer: This is the Bell number B(5) which is the sum of all the Stirling Numbers of the Second Kind of order 5. That is B(5)=1+15+25+10+1=52.

iii) How many surjective functions are there from a 5-set to a 3-set? Answer: As we saw above, the number is ((5,3)=3!S2(5,3)=6∙25=75. The point is that we partition the 5-set into three blocks (25 choices) and then choose a bijection from these blocks into the codomain (3! choices).

3) The rest of section 12.1 is on Stirling Numbers of the First Kind. They are less important than Stirling Numbers of the Second Kind and their meaning rather more obscure. You do not need to look at them.

4) Catalan Numbers

a) The Catalan numbers Cn are named after Eugene Charles Catalan (1814–1894) of Belgium. They have a number of combinatorial interpretations.

i) The number of ways to put parentheses around a product involving n multiplications (n+1 factors)

ii) The number of ways to divide an n-gon with labeled vertices into triangles

iii) The number of sequences of n 1’s and n –1’s such that no partial sum of the terms starting at the beginning is negative

iv) The number of lattice paths from (0,0) to (n,n) (think of traveling along city blocks) of shortest length that never rise above the diagonal

v) The number of “visually distinct” binary trees in the plane with n leaves

b) The book gives a pretty good treatment of Catalan numbers along with some reasonably deep and details explanations of why the main results are true. Please read the book lightly. You may also want to look at the clear and attractive page on Catalan numbers at http://mathforum.org/advanced/robertd/catalan.html. You should finish the section knowing the above interpretations and knowing the formula Cn=C(2n,n)/(n+1).

5) Applications of the General Principle of Inclusion and Exclusion

a) You have already seen the Principle of Inclusion and Exclusion for two sets and three sets. It generalizes to an arbitrary finite number of sets. That is, the cardinality of a union of sets equals the sum of the cardinalities of the individual sets minus the cardinality of the pairwise intersections, plus the triple intersections, minus the quadruple intersections, etc.

b) For example, given sets A, B, C, and D, we have (where AB indicates the intersection of A and B).
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c) In practice we most often have a set S from which we want to remove undesired elements in a union. For instance, we want to find 
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d) The book gives the general form of these theorems as theorems 12.5 and 12.6 (the book obscures the second version a little, using DeMorgan’s Laws to transform the complement of a union into the intersection of complements).

e) Examples

i)  We can use the Principle of Inclusion and Exclusion to derive a formula for ((n,k) and thus for the Stirling Numbers of the Second Kind.

(1) Let n and k be positive integers and let S be the set of functions from [n] into [k]. That is, S={f:[n]→[k]}. For i=1,2,…,k, let Ai={functions from [n] to [k] that exclude i from their range}. For instance, A1 is the set of functions that map nothing to 1. Consequently the intersection A2A4 is the set of functions that map nothing to 2 or 4. Can you calculate |S|, |A1|, |A2A4|, and, in general, |A1A2…Ai|?

(2) We note that in general the size of an intersection depends only on the number of sets involved. In particular the intersection of j sets has (k–j)n elements. Also, there are C(k,j) ways to choose j sets from among the k.

(3) Putting this all together, we see 
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(4) A minor reindexing of this formula produces the formula we have seen above, 
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, and consequently we get a formula for the Stirling Numbers of the Second Kind 
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ii) The Hatcheck Problem/Derangements

(1) The Hatcheck Problem is a classic combinatorial question: One evening n gentlemen go to the opera, checking their hats as they enter. The hat check girl absentmindedly throws the claim checks away rather than putting them with the hats. When the gentlemen return for their hats, the hat check girl returns them randomly. What is the probability that no gentleman receives his own hat back?

(2) An equivalent question comes from a purely mathematical setting: Recall that a permutation is a bijection f:[n]→[n], where n is a nonnegative integer. If f is a permutation and f(i)=i, then i is a fixed point of the permutation and we say that f fixes i.. For instance if n=6, the permutation 526413 has fixed points 2 and 4. A permutation without fixed points is called a derangement. For instance 314265 is a derangement for n=6. What is the probability that a random permutation on [n] is a derangement?

(3) Once again we count by starting with all permutations of [n] and then using inclusion/exclusion to delete the permutations with fixed points. Let S be the set of permutations of [n]. That is, S={f:[n]→[n]} such that f is bijective. Further, for i=1,2,…,n, let Ai be the set of permutations of [n] that fix i. That is, Ai={f:[n]→[n], such that f(i)=i} (So the functions in A1 fix 1. They may fix other points too). Clearly the set of derangements is S–A1∪A2∪…∪An.

(4) We know |S|=n!. Clearly |Ai|=(n–1)! for every i. Similarly |AiAj|=(n–2)!, whenever i≠j. In general the cardinality of the intersection of k of the Ai will be (n–k)!. As in the case of surjections above, there are C(n,k) ways to choose k of the Ai to intersect. This leads to the following computation of the number of derangements.

(5) Note that in final line, the expression within parentheses is the probability of a random permutation being a derangement since we divide the final expression by n!, the number of permutations, to get the probability.
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(6) The following table shows the number of derangements and the probability of getting a derangement for values of n from 0 to 10.

	n
	n!
	Probability
	Derangements

	0
	1
	1
	

	1
	1
	0
	0

	2
	2
	0.5
	1

	3
	6
	0.333333333
	2

	4
	24
	0.375
	9

	5
	120
	0.366666667
	44

	6
	720
	0.368055556
	265

	7
	5040
	0.367857143
	1854

	8
	40320
	0.367881944
	14833

	9
	362880
	0.367879189
	133496

	10
	3628800
	0.367879464
	1334961

	
	
	
	

	
	note 1/e=
	0.367879441
	


(7) The number of derangements is easy to check by hand for n=1,2,3,4.

(8) We have shown that the probability of a random permutation being a derangement is 
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. You may recall from calculus that 
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, where e is the base of the natural logarithm (approximately 2.71828). This series converges quickly, so for n at all large, the probability of a random permutation being a derangement (or of all gentlemen at the opera getting the wrong hats) is very close to e-1. The table above indicates that even for n=10 there is agreement to seven decimal places.
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