Math 507, Lecture 3, Fall 2003, Probability Models (2.1–2.5)

1) Basic Notions of Probability With Examples

a) Four Basic Definitions

i) Experiment: An action that produces an observable result. 

ii) Outcome: The result of an experiment.

iii) Sample Space: A list of all possible outcomes (or, more properly, all admissible outcomes).

iv) Event: A subset of the sample space. Often the subset has a natural, nontechnical description.

b) Examples

i) Roll a die. Observe the number that comes up. The sample space is S={1,2,3,4,5,6}. There are many natural events: A= “the roll is even” = {2,4,6}. B= “the roll is odd” = {1,3,5}. C= “the roll is less than 3” = {1,2}. D= “the roll is greater than six” = {}. E= “the roll is five” = {5}. In this last case note the difference between the outcome 5 and the event “the roll is 5.” One is an object. The other is a set. For technical reasons we always find the probabilities of events (sets), never of outcomes.

ii) Ask a passerby his preference for the next president. Record his choice. There are many possible sample spaces, depending on what interests us: S={democrat, republican, independent, other}. S={native-born US citizens age 35 or older}. S={names on a list of likely candidates}. Some conceivable events are A= “passerby prefers a major party” = {democrat, republican} (using the first sample space) or B= “passerby prefers a mathematician” = {Reid Davis, Carl Wagner,…}.

iii) In baseball a batter steps up to the plate. Record the result of his at bat. The sample space is, for instance, {single, double, triple, home run, strikeout, ground out, fly out, walk} (many others are possible). Typical events of interest are A= “the batter gets a hit” = {single, double, triple, home run} and B= “the batter gets an out” = {strikeout, ground out, fly out} and C= “the batter gets a home run” = {home run}.

2) The Relative Frequency of an Event

a) Definition: The relative frequency of an event is the fraction, proportion, or percentage of the time that the event happens. That is, it is the ratio of the number of occurrences of the event to the number of repetitions of the experiment. Many uses of probability treat it as a kind of relative frequency.

i) You flip a coin 50 times and get 23 heads. Then the relative frequency of heads was 23/50 or 0.46 or 46%.

ii) You roll 10 dice, getting 4 ones, 2 twos, 1 three, 1 four, 2 fives, and 0 sixes. In this roll the relative frequency of rolling an odd number is 70%. The relative frequency of rolling a six is 0%.

b) Two sorts of relative frequency: observed and predicted

i) Observed Relative Frequency

(1) Definition: Observed relative frequency is the relative frequency of an event in experiments that have already happened. The experiments live in the past. For instance, the two examples above both report observed relative frequency. Many books call observed relative frequency the experimental or empirical probability of an event.

(2) Constraints: The nature of observed relative frequency guarantees that such relative frequencies will obey certain rules:

(a) They will always be numbers between 0 and 1, inclusive.

(b) The relative frequency of nothing happening is 0, and the probability of something happening is 1 (since every experiment produces an outcome).

(c) If two events have no outcomes in common, then the relative frequency with which either happens equals the sum of the relative frequencies of each individually. For instance in the earlier roll of ten dice 40% of the rolls were ones and 20% were twos, so 60% were either ones or twos.

(3) Formally, then, we can say the following: Let S be a sample space for some experiment. For every subset E of S let ORF(E) be the observed relative frequency of E in some fixed number of repetitions of the experiment. Then
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ii) Predicted Relative Frequency

(1) Definition: Predicted Relative Frequency is the relative frequency we anticipate an event having in upcoming repetitions of an experiment. Many books call this the theoretical probability of the event. For instance one interpretation of the statement “the probability of flipping heads on a quarter is 50%,” is as a prediction that in many flips of the quarter about half will come up heads.

(2) Constraints: Since predicted relative frequencies predict what relative frequencies will actually be observed, it is intuitively reasonable to demand that they satisfy the same three rules as observed relative frequencies.

(3) In particular, then, the three formal statements about ORF above should still hold if we replace them by PRF (predicted relative frequency).

iii) The Relationship between ORF and PRF (Experimental and Theoretical Probability)

(1) The NCTM mandates that experimental and theoretical probability both be viewed and taught as legitimate, that they both be treated as genuine probability. This appears to be a philosophically-driven mandate to affirm certain words without giving them actual meaning.

(2) What relationship, then, do ORF and PRF have? A subtle one! Broadly speaking each informs the other. We reject predictive models as incorrect when they violate our intuition and our experience of what is typical. We dismiss observations as atypical when they diverge too far from well-established predictions.

(3) For example, our intuition and experience strongly affirm that the PRF of heads on a flipped quarter is 50%. If we happen to flip a quarter ten times and get tens heads, we treat this as a rare event and continue to believe that 50% is the correct PRF.

(4) On the other hand, many students believe that in flipping two coins there are three equally-likely results: no heads, one head, or two heads. It takes only a little observation to convince them that this model is incorrect, one head being quite a bit more likely than none or two.

(5) Naïve observation has little predictive power. Beware textbook exercises that have students flip a coin ten times, note that it lands heads seven times, declare the experimental probability of heads to be 70%, and then insinuate that this percentage tells us something about what to anticipate from future flips. Statistical methods, on the other hand, help us judge whether observation should persuade us to revise our predictions or predictions should persuade us to discount our observations.

3) The Probability Measure: Axioms for All Probability Models

a) We have seen that ORF and PRF have different sources but satisfy the same rules of mathematical behavior. Summarizing and slightly extending these rules, we define the notion of a probability measure, a concept that encompasses both ORF and PRF.

b) Definition: Let S be a sample space. Let P be a function that assigns a value to every subset (event) E of S. Then P is a probability measure if it obeys the following axioms: 
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c) The fourth condition is a technical one that will not concern us much. In particular it is trivial if S is a finite sample space. As a non-trivial example, consider an experiment in which you flip a quarter and count the number of flips until you get heads. Here S is the set of positive integers and we naturally expect P(S)=P(1 flip)+P(2 flips)+…. The LHS equals 1 and the RHS is an infinite series that sums to 1, satisfying condition (iv).

d) Henceforth when we talk about the probability of an event, we will mean simply the value of its probability measure (which must be defined in that context). Since this list of four axioms includes the rules for both ORF and PRF, all results about probability measures are also results about ORF and PRF. Mathematically we can treat them identically. In practice if P represents ORF, we will call it empirical probability, and if P represents PRF, we will call it theoretical probability.

4) Basic Theorems About Probability Measures

a) Theorem 2.1: If E is an event, then 
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b) Example: This theorem makes it easy to find the probability that ten flips of a coin have at least one head by letting us find one minus the probability that all ten flips are tails.

c) Theorem 2.2: If E and F are events with E a subset of F, then 
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d) Theorem 2.3: The probability of the union of pairwise disjoint events equals the sum of their individual probabilities (this is the generalization of the additivity axiom (iii)). The proof is a straightforward argument by mathematical induction.

e) Theorem 2.4: (The probability of not-necessarily-disjoint unions — the probabilistic version of the principle of inclusion and exclusion). If E and F are events (without restriction) with probability measure P, then 
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. Proof: Again the proof depends on breaking the union of the two events into pairwise disjoint subsets as illustrated in the Venn Diagram on page 28. Thus 
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f) Note: Theorem 2.4 generalizes to the union of more sets in a fashion analogous to that of the principle of inclusion and exclusion.

5) The Most Common Probability Measure: The Uniform Model

a) If S is a finite sample space, we can define a useful probability measure by defining 
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 for every subset E of S. This says in essence that every outcome in S is equally likely and so the probability of an event is the fraction of all outcomes that lie in the event. It is common to say that under this model the probability of an event is the number of favorable outcomes divided by the total number of outcomes. This probability measure is called the uniform probability model for the finite sample space S.

b) Combinatorics is crucial for finding probabilities under the uniform model because the calculations all come down to counting outcomes in the events.

c) The uniform model is appropriate (that is, it matches reality) when a problem states that the elements of S are chosen “at random,” when a game of chance is described as “fair,” or when the outcomes in S are described as “equally likely.” It is completely inappropriate (that is, it does not match reality) when the outcomes are not equally likely, as is often the case.

d) Example: You roll a die. What is the probability it rolls a prime number? Here the sample space is S={1,2,3,4,5,6}, and the event of interest is E={2,3,5}. Since E has three elements and S has six, we conclude P(E)=3/6=1/2=0.5=50%.

e) Example: Your favorite pizza parlor offers six meat toppings and eight veggie toppings. If you order a three-topping pizza at random, what is the probability that it is vegetarian? Here S is the set of all three-subsets of the fourteen-set of toppings, and the event E=the pizza is vegetarian is the set of all three-subsets of the eight vegetarian toppings. Thus 
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f) Example:  What is the probability that in a group of n people there is at least one shared birthday? If we arrange the people in, say, alphabetical order, then we can represent the birthdays of n people as an n-tuple of integers between 1 and 365 (ignoring Feb. 29, the first term is the day of the year of the first person’s birthday, etc.). The sample space S is the set of all such n-tuples of which there are 
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. It is difficult to find the probability that two or more of the terms in a random n-tuple are the same, but it is easy to find the probability that they are all different since such n-tuples are just permutations of [365] taken n at a time. Thus P(at least two birthday are the same)=1–P(all birthdays are different)=
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. The table on page 31 shows values of this probability for various values of n. In particular it edges above 50% when n=23 (an astonishingly small number) and reaches 89% when n=40.

6) Statistical Interlude

a) Many folks think of statistics as a branch of mathematics. Some statisticians argue, however, that we should think of statistics as “the science of data.” Certainly it is clear that statistics begins with data.

b) Why do we need a science of data?

i) Data often comes in large, unwieldy chunks that are, on the surface, incomprehensible. Statistics gives us tools to take large amounts of data and summarize them usefully. Think of it as the difference between receiving a millimeter-by-millimeter description of the latitude and longitude of points on a path from Knoxville to Memphis and receiving the instruction “follow I-40 west until you get there.”

ii) Even when data is of manageable volume, it sometimes contains information and patterns not obvious to the naked eye. Statistics offers tools for discovering these.

iii) Often we have to make decisions based on incomplete data. Statistics helps us determine how much the incompleteness obscures the full picture. In particular statistics helps us decide when our empirical probabilities (from data) contradict our theoretical probabilities so badly as to make us revise our models.

c) Examples of summaries that do or do not work

i) Often we try to summarize a collection of numbers by means of a single number. Common numbers that play this role are the mean (average), median (middle), and mode (most frequent).

(1) An insurance company has a great interest in knowing its mean payout per auto liability policy issued to 18-year-old boys in a year, because the product of this mean with the number of such policies issued is the company’s total payout on such customers. The company must set the premium for such customers above the mean in order to make a profit.

(2) Summarizing ACT scores with the mean seems less useful; it is unclear what information we learn from it. In this case the median gives us a clearer picture, letting us know the score that half the students scored above.

(3) Neither the mean nor the median shoe size is of much interest to a shoe manufacturer, but the mode has obvious applications.

(4) Some data seems to defy summary. How would you summarize the phone numbers in the Knoxville phone book? Nothing is useful but the actual data.

(5) Again, consider a small company in which 10 workers make various salaries of about $25,000 each and the owner makes $10 million per year. There is no single number that represents this data well. The median and mode are both about $25,000, and the mean is about $932,000. None of these numbers tells enough of the whole story to be worth computing.

ii) One of the simplest and most useful statistical techniques involves simply counting the data that falls into various categories. For example the website http://www.amstat.org/publications/jse/jse_data_archive.html contains a file with information on the passengers of the Titanic, listing their classes of travel (crew, first, second, third), their sexes, their ages (adult or child), and whether they survived. The original source is "Report on the Loss of the `Titanic' (S.S.)" (1990), British Board of Trade Inquiry Report (reprint), Gloucester, UK: Allan Sutton Publishing. This is an example of unwieldy data: 2201 rows of four numbers each.

(1) It makes an interesting study, however, simply to count the number of Titanic passengers falling into various categories. For instance a simple two-way table gives us a much clearer picture of the people on the Titanic than the 2201 records can.

	 
	Total
	Man
	Woman
	Child

	Crew
	885
	862
	23
	0

	First
	325
	175
	144
	6

	Second
	285
	168
	93
	24

	Third
	706
	462
	165
	79

	Total
	2201
	1667
	425
	109


(2) Again it takes nothing but counting to see how many of the people in each of these categories survived.

	NUMBER SURVIVING BY CLASS AND SEX/AGE

	 
	Survived
	Man
	Woman
	Child

	Crew
	212
	192
	20
	

	First
	203
	57
	140
	6

	Second
	118
	14
	80
	24

	Third
	178
	75
	76
	27

	Total
	711
	338
	316
	57


(3) In some ways, however, this table is less clear than we might hope. We see that more men than women survived and that far fewer children survived than either men or women. We also see that more crew survived than passengers in any passenger class. A common statistical tool is to put all these counts on level ground by converting them to percentages — reporting the percentage in each category that survived

(4) Now we can see the matter more clearly. Within every class women and children were much more likely to survive than men were. Indeed in every class but third the survival rates of women and children were quite high. At the same time we see that class influenced survival dramatically, with third class and crew survival being much lower than that for first and second class. (For comparison, the overall survival rate was 32.3%.)

	PERCENTAGE SURVIVING BY CLASS AND SEX/AGE

	 
	Survived
	Man
	Woman
	Child

	Crew
	24.0%
	22.3%
	87.0%
	n/a

	First
	62.5%
	32.6%
	97.2%
	100.0%

	Second
	41.4%
	8.3%
	86.0%
	100.0%

	Third
	25.2%
	16.2%
	46.1%
	34.2%


(5) These tables are known as two-way tables or contingency tables. Simply by giving counts and percentages in each category, they give us a far better picture of the composition of the Titanic passengers and crew (and survivors) than the raw data ever could. This is an example of a helpful summary, showing us that “women and children first” was a strong influence on the Titanic but not so much as to eradicate class distinctions.
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