MATH 507, LECTURE NINE, FALL 2003

CHEBYSHEV AND LARGE NUMBERS

1) Chebyshev’s Theorem (Pavnuti L. Chebyshev, 1829-1894)

a) It turns out that the standard deviation is a powerful tool in describing the behavior of a random variable X, especially in terms of how far X is likely to fall relative to its expected value. From some point of view this is obvious, since the standard deviation is defined as a kind of average distance of X from its mean, but its importance is astonishingly great.

b) Chebyshev’s Theorem guarantees the improbability of a random variable taking a value far from its mean, where “far” is measured by the size of a standard deviation. Put it another way, all random variables are likely to take values close to their means. For instance, the probability of a random variable taking a value more than two standard deviations from its mean is no more than ¼, regardless of the random variable. Of course it may be much less that ¼. The probability that it takes a value more than three standard deviations from the man is no more than 1/9, regardless of the random variable. (Consequently the likelihood of being within two or three standard deviations of the mean is ¾ or 8/9 respectively).

c) The Theorem (3.15): If X is a discrete random variable with mean ( and standard deviation (, then for every positive real number 
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 or equivalently 
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. That is, the probability that a random variable will assume a value more than h standard deviations away from its mean is never greater than the square of the reciprocal of h.

d) Idea of the proof: Remember that ( is essentially the average distance that X falls from its mean. That means that values above ( are “balanced” by values below ( to get a mean of (. Since the smallest possible distance is 0 (if X=(), the distance between X and ( cannot be too large too much of the time; otherwise there cannot be enough small distances to balance them. Formally we show this by taking the formula for the variance of X, deleting the terms of the summation in which X is within h( of X, and then arguing that the remaining terms still cannot add up to more than the variance. The remaining terms are all at least as big as 
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 and so the total probability of getting such terms must be no more than 
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Proof: From the definition of variance and the Law Of The Unconscious Statistician

f) Now divide the first and last terms by 
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to get the first inequality in Chebyshev’s Theorem. The second inequality is simply the complement of the first. The first gives us an upper bound on the probability that X will take a value more than h( from (. The second gives us a lower bound on the probability that X will take a value no further than h( from (. These bounds apply to every random variable regardless of distribution, and so they are often quite crude. When we have information about the distribution, we can often do much better.

g) Example: One study of heights in the U.S. concluded that women have a mean height of 65 inches with a standard deviation of 2.5 inches. If this is correct, what can we say about the probability a randomly-chosen woman has a height between 60 and 70 inches? Let X be the height of a randomly-chosen woman. We do not know the distribution of X, but we can apply Chebyshev to say 
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. That is, with absolute certainty at least 75% of women are between 60” and 70” tall (assuming the data is correct). Note that by the same formula we could get a lower bound for X being in every symmetric interval centered on 65” (and h need not be an integer). Of course if h<1, then the lower bound is a correct but useless negative number.

h) The previous example is the sort that one often sees in college freshman statistics texts (and thus in high school statistics texts), trying to give the students some intuition for the meaning of standard deviations. In my experience such examples go over the head of freshman statistics students, but well-prepared high school students might do better.

i) Our text has several other examples of applications of Chebyshev’s Theorem . Example 1 is similar to the one we just did. Example 2 takes on an asymmetric interval around the mean (just shrink to a symmetric one). Example 3 uses Chebyshev to get a very crude lower bound on a probability involving a Poisson random variable. Example 4 uses Chebyshev “backward,” starting with a desired probability and then finding an interval that has this probability of containing the random variable. Please work through these examples on your own.

2) Bernoulli’s Law of Large Numbers (Jacob Bernoulli, 1654—1705)

a) When we say the probability of flipping a coin heads is 50%, we understand that in a small number of flips the percentage of heads may be quite different from 50%. For instance in one flip the percentage of  heads will be either 0% or 100%. In two flips, the probability of 0% heads is ¼ as is the probability of 100% heads. Even in ten flips the probability of getting 80% or more heads is 56/1024 (you can calculate this easily now), which is about 5.5%, and similarly the probability of getting 20% or fewer heads is 56/1024. Intuitively, however, as the number of flips grows large we imagine that the percentage of heads ought to grow close to 50%.

b) Bernoulli’s Law of Large Numbers justifies this intuition. Let X be a binomial random variable with parameters n and p, and let d be a (small) positive number. Bernoulli’s Law of Large Numbers  states that by making n large enough, we can make the probability that the percentage of successes X/n is within d of p as close to 1 as we like. For instance there is some fixed number N such that if you flip a coin N times or more the probability of getting between 49% and 51% heads is at least 0.9999 (in this case p=0.5 and d=0.01).

c) Background

i) If X~binomial(n,p), then X is the number of successes in n trials. Define a new random variable 
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is the fraction of successes in n trials. By previous theorems 
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. That is, the mean fraction of successes in n trials is precisely the probability of success on each individual trial, an intuitively reasonable result.

ii) Under the same circumstances 
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 where q equals 1-p, the probability of failure on a single trial, as usual. Note that this standard deviation shrinks to zero as n grows large. We will sometimes denote this quantity by 
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iii) Theorem 3.16: Let X~binomial(n,p) and 
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and, equivalently, 
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. Note that the first probability approaches 0 as n increases without limit and the second quantity approaches 1 under the same circumstances.

iv) Proof of Theorem 3.16: By Chebyshev’s Theorem, 
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. Note that 
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in the statement of Chebyshev’s Theorem. This finishes the proof of the first statement, and the second follows immediately by the theorem on the probability of a complement.

v) Example: Suppose you flip a coin 10,000 times. Find an upper bound on the probability that the fraction of heads differs from p=0.50 by more than 0.02. In this case n=10,000, p=q=0.50, and d=0.02. Applying the previous theorem 
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. The second statement in the theorem says there is a probability of 93.25% (=1-6.25%) that the fraction of heads in 10,000 flips will lie in the interval [0.48,0.52].

vi) Example: How many times should we flip a coin to have a 99% probability of having the fraction of heads within 2% of the true value (i.e., in the interval [0.48,0.52]? Now we have p=q=0.50, d=0.02. We set the RHS of the first inequality in Theorem 3.16 to be no more than 0.01 (that is, 1-0.99) and solve for n: That is 
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. This yields n=62,500.

d) Bernoulli’s Law of Large Numbers (Theorem 3.17): Let X~binomial(n,p) and 
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 (Note that we replace > by >= because of taking limits). We know, however, that all probabilities are less than or equal 1. Therefore (by the Squeeze Theorem) 
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e) As the book notes, Bernoulli’s result is a special case of the Weak Law of Large Numbers, and Bernoulli proved it over a century before Chebyshev’s birth. Not having Chebyshev’s Theorem, Jacob Bernoulli had to find a much more clever argument. Also, this result and its generalizations are what the layman calls the law of averages: given enough trials, it is virtually certain that the observed relative frequency of success will be close to the theoretical probability of success. Please note, however, the elucidating comments in the final paragraph on p. 88 on swamping vs. compensation.

f) Application (Choosing Sample Size to Estimate a Binomial Probability p):

i) Intuitively we feel that fraction of successes in a large number of trials ought to gives us a good estimate of the probability of success in a single trial. That is, in repeated independent trials with the same probability of success p, we imagine it is likely that 
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. Bernoulli’s Law of Large Numbers confirms this, showing how the number of trials n (we may also think of n as a sample size), the error bound d, the probability of success p, and the probability of getting an estimate within the error bound interact.

ii) A common task in inferential statistics is to use data to estimate a binomial probability p. For instance, the NBC Nightly News wants to report the presidential approval rating. That is, they want to find the percentage p of American adults who will answer “yes” to the question, “Do you approve of the job President Bush is doing?” To do this, they ask this question of a random sample (approximately) of n American adults and count the number X who say yes. Then X~binomial(n,p), so X/n ought to be a “reasonable” estimate of p. Typically the Nightly News wants at least a 95% probability that X/n is within 2% of the true value of p. How large should n be to give us the desired accuracy with the specified probability?

iii) Bernoulli tells us that 
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. We are saying we want the probability on the LHS to be at least 95% with d=0.02 (the “margin of error” as it is typically called). We can guarantee this by making the expression on the RHS at least 95%. That is, we want 
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. Offhand we cannot solve this inequality for n because another unknown p is present (and it surely is unknown since it is the very parameter we want to estimate!).

iv) Note, however, that 
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. This is a parabola that opens downward, taking on a maximum value of ¼ when p=½  (This is easy to establish by algebra or by calculus). Thus 
[image: image29.wmf](

)

(

)

(

)

.

02

.

0

4

/

1

1

02

.

0

1

2

2

n

n

pq

d

p

X

P

-

³

-

>

£

-

 If we can make the final expression at least 0.95, then we are guaranteed the accuracy we desire. Simple algebra yields n=12,500 as the smallest n that works. Again this is a coarse bound. We can do much better once we know the normal approximation to the binomial

3) Data (Observed Relative Frequencies)

a) Suppose we perform an experiment n times and the sample space for the experiment is 
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. Then our experiment is, in effect, a random variable X with range S and pdf 
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. Hence we can find the expected value, variance, and standard deviation of this random variable as follows:

b) First, 
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. The first summation follows strictly from the definition of expected value, but the second shows that we are just finding the ordinary “average” of the observed data, summing all the data (since we multiply each value by the number of times it occurred and add the results) and then dividing by the number of observations. In some contexts this expected value is call the sample mean of the data and denoted by 
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. The word sample indicates that we are treating the data values as a sample of the population of values of X available.

c) Similarly, 
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. Here the first summation follows from the definition of variance. The second shows that we can also calculate it by finding the difference between every individual observation and the mean, squaring it, summing the squares, and dividing by the number of observations. (Note in the book that the shortcut formula for variance also works). This variance (and the related standard deviation) are sometimes known as the sample variance and sample standard deviation. In this case they are denoted by  
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 and s respectively.

d) Since X is a random variable and f is its pdf, all of our theorems about means, variances, and standard deviations apply to the sample means, variances, and standard deviations calculated from data. The example on p. 91 shows the calculation of the sample mean, variance, and standard deviation from data generated by rolling a die. Of course you should perform such calculations using the built-in statistical functions on your calculator rather than by dragging yourself through the formulas.

e) Also Chebyshev’s Theorem applies to these sorts of numerical observations. In a set of numerical observations no more than 
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of the data can lie more than h sample standard deviations from the sample mean. The book gives an example of applying Chebyshev’s Theorem on p. 93.

f) Note, most statistics texts for college freshmen (and presumably for high school students) give a slightly different definition of sample variance and standard deviation, dividing by n-1 instead of by n in the formulas above. Neither formula is “wrong” since these are definitions rather than theorems. Our definition has the advantage of maintaining consistency with our prior definitions so that all our theorems apply without further argument. If we actually are taking a sample from a larger population, the other definition (dividing by n-1) has the advantage that the resulting sample standard deviation is an “unbiased” estimator of the mean of the population (while our sample standard deviation slightly underestimates the mean of the population on average).

� EMBED Equation.3  ���
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