Math 507, Lecture 9, Fall 2003

Continuous Random Variables (4.1–4.4)

1) Definition and Basic Properties

a) Recall that a random variable X is simply a function from a sample space S into the real numbers. The random variable is discrete is the range of X is finite or countably infinite. This refers to the number of values X can take on, not the size of the values. The random variable is continuous if the range of X is uncountably infinite and X has a suitable pdf (see below). Typically an uncountably infinite range results from an X that makes a physical measurement—e.g., the position, size, time, age, flow, volume, or area of something.

b) The pdf of a continuous random variable X must satisfy three conditions.

i) It is a nonnegative function (but unlike in the discrete case it may take on values exceeding 1).

ii) Its definite integral over the whole real line equals one. That is
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iii) Its definite integral over a subset B of the real numbers gives the probability that X takes a value in B. That is, 
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 for “every” subset B of the real numbers. As a special case (the most common case) 
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 for all real numbers a and b. Put simply, the probability is simply the area under the pdf curve over the interval [a,b].

iv) If X has uncountable range and such a pdf, then X is a continuous random variable. In this case we often refer to f as a continuous pdf. Note that this means f is the pdf of a continuous random variable. It does not necessarily mean that f is a continuous function.

v) Note that by this definition the probability of X taking on a single value a is always 0. This follows from 
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, since every definite integral over a degenerate interval is 0. This is, of course, quite different from the situation for discrete random variables.

vi) Consequently we can be sloppy about inequalities. That is 
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. Remember that this is blatantly false for discrete random variables.

c) There are random variables that are neither discrete nor continuous, being discrete at some points in their ranges and continuous at others. They are not hard to construct, but they seldom appear in introductory courses and will not concern us.

d) Mathematicians have defined many generalizations of the Riemann integral of freshman calculus—the  Riemann-Stieljes integral and the Lesbegue integral being common examples. With a suitable generalized integral it is possible to treat discrete and continuous random variables identically (as well as the mixed random variables), but this approach lies far beyond the scope of our course.

e) Examples

i) Let X be a random variable with range [0,2] and pdf defined by f(x)=1/2 for all x between 0 and 2 and f(x)=0 for all other values of x. Note that since the integral of zero is zero we get 
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. That is, as with all continuous pdfs, the total area under the curve is 1. We might use this random variable to model the position at which a two-meter with length of rope breaks when put under tension, assuming “every point is equally likely”. Then the probability the break occurs in the last half-meter of the rope is 
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ii) Let Y be a random variable whose range is the nonnegative reals and whose pdf is defined by 
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for nonnegative values of x (and 0 for negative values of x). Then 
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iii) The random variable Y might be a reasonable choice to model the lifetime in hours of a standard light bulb with average life 750 hours. To find the probability a bulb lasts under 500 hours, you calculate 
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iv) Note that in both these examples the pdf is not a continuous function. Also note that in all these cases the pdf behaves as a linear density function in the physical sense: the definite integral of the density of a nonhomogeneous wire or of a lamina gives the mass of the wire or lamina over the specified interval. Here the mass is the probability.

2) Cumulative Distribution Functions

a) The cdf F of a continuous random variable has the same definition as that for a discrete random variable. That is, 
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. In practice this means that F is essentially a particular antiderivative of the pdf since 
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. Thus at the points where f is continuous F’(x)=f(x).

b) Knowing the cdf of a random variable greatly facilitates computation of probabilities involving that random variable since, by the Fundamental Theorem of Calculus, 
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c) In the second example above, F(x)=0 if x is negative and for nonnegative x we have 
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. Thus the probability of a light bulb lasting between 500 and 1000 hours is 
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d) In the first example above F(x)=0 for negative x, F(x)=1 for x greater than 2 and F(x)=x/2 for x between 0 and 2 since for such x we have 
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. Thus to find the probability the rope breaks somewhere in the first meter we calculuate F(1)-F(0)=1/2-0-1/2, which is intuitively correct.

e) If X is a continuous random variable, then its cdf is a continuous function. Moreover, 
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. Again these results are intuitive.

3) Expectation and Variance

a) Definitions

i) The expected value of a continuous random variable X is defined by 
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. Note the similarity to the definition for discrete random variables. Once again we often denote it by 
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. As in the discrete case this integral may not converge, in which case the expectation if X is undefined.

ii) As in the discrete case we define the variance by 
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. Once again the standard deviation is the square root of variance. Variance and standard deviation do not exist if the expected value by which they are defined does not converge.

b) Theorems

i) The Law Of The Unconscious Statistician holds in the continuous case. Here it states 
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ii) Expected value still preserves linearity. That is 
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. The proof depends on the linearity of the definite integral (even an improper Riemann integral).

iii) Similarly the expected value of a sum of functions of X equals the sum of the expected values of those functions (see theorem 4.3 in the book) by the linearity of the definite integral.

iv) The shortcut formula for the variance holds for continuous random variables, depending only on the two preceding linearity results and a little algebra, just as in the discrete case. The formula states 
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v) Variance and standard deviation still act in the same way on linear functions of X. Namely 
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c) Examples

i) In the two-meter-wire problem, the expected value should be 1, intuitively. Let us calculate: 
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ii) In the same example the variance is 
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 and consequently 
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. This result seems plausible.

iii) It is also possible to compute the expected value and variance in the light bulb example. The integration involves integration by parts.
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