Proofs of Divisibility Tests

Here is a basic fact: Suppose you have a positive integer x which, when you write its digits, looks like:

$$
a_{m} \cdots a_{4} a_{3} a_{2} a_{1} a_{0} .
$$

So a_{0} is the digit in the one's place, a_{1} is the digit in the 10 's place, a_{2} is the digit in the 100 's place, etc. Then the number x equals

$$
\begin{aligned}
x & =a_{0}+a_{1} \cdot 10+a_{2} \cdot 100+a_{3} \cdot 1000+a_{4} \cdot 10000+\cdots+a_{m} \cdot 10^{m} \\
& =a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+a_{3} \cdot 10^{3}+a_{4} \cdot 10^{4}+\cdots+a_{m} \cdot 10^{m} .
\end{aligned}
$$

Most of the divisibility tests and their proofs come from examining this expression mod n for some n, and replacing the various powers of 10 with their equivalents $\bmod n$:

1. Proof of Test for Divisibility by 2. Observe that 10 divided by 2 has a remainder of 0 . So $10 \equiv 0(\bmod 2)$. Then $10^{k} \equiv 0^{k} \equiv 0(\bmod 2)$ for $k=1,2,3, \ldots$. Hence

$$
\begin{aligned}
x & \equiv a_{0}+a_{1} \cdot 0+a_{2} \cdot 0+a_{3} \cdot 0+a_{4} \cdot 0+\cdots+a_{m} \cdot 0 \\
& \equiv a_{0}(\bmod 2) .
\end{aligned}
$$

Therefore x is divisible by 2 if and only if its last digit a_{0} is divisible by 2 , which happens if and only if the last digit is one of $0,2,4,6,8$.
2. Proof of Test for Divisibility by 4. Observe that 100 divided by 4 has a remainder of 0 . So $100 \equiv 0(\bmod 4)$. Hence $10^{k} \equiv 0(\bmod 4)$ for $k=2,3,4, \ldots$. Then

$$
\begin{aligned}
x & \equiv a_{0}+a_{1} \cdot 10+a_{2} \cdot 0+a_{3} \cdot 0+a_{4} \cdot 0+\cdots+a_{m} \cdot 0 \\
& \equiv a_{0}+a_{1} \cdot 10(\bmod 4) .
\end{aligned}
$$

Therefore x is divisible by 4 if and only if the number $a_{0}+a_{1} \cdot 10$ is divisible 4 . But $a_{0}+a_{1} \cdot 10$ is the number formed by keeping only the last two digits of x. So x is divisible by 4 if and only if the number formed by dropping all but the last two digits of x is divisible by 4 .
3. Proof of Test for Divisibility by 9 . Observe that 10 divided by 9 has a remainder of 1. So $10 \equiv 1(\bmod 9)$. Hence $10^{k} \equiv 1^{k} \equiv 1(\bmod 9)$ for $k=1,2,3,4, \ldots$. Then

$$
\begin{aligned}
x & \equiv a_{0}+a_{1} \cdot 1+a_{2} \cdot 1+a_{3} \cdot 1+a_{4} \cdot 1+\cdots+a_{m} \cdot 1 \\
& \equiv a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{m}(\bmod 9) .
\end{aligned}
$$

Therefore x is divisible by 9 if and only if the sum of its digits is divisible by 9 .
4. Proof of Test for Divisibility by 10 . Observe that 10 divided by 10 has a remainder of 0 . So $10 \equiv 0(\bmod 10)$. Hence $10^{k} \equiv 0^{k} \equiv 0(\bmod 10)$ for $k=1,2,3, \ldots$. Then

$$
\begin{aligned}
x & \equiv a_{0}+a_{1} \cdot 0+a_{2} \cdot 0+a_{3} \cdot 0+a_{4} \cdot 0+\cdots+a_{m} \cdot 0 \\
& \equiv a_{0}(\bmod 10) .
\end{aligned}
$$

Therefore x is divisible by 10 if and only if its last digit a_{0} is divisible by 10 , which happens if and only if the last digit is 0 .
5. Proof of Test for Divisibility by 11 . Observe that $10 \equiv-1(\bmod 11)$. Hence $10^{k} \equiv$ $(-1)^{k}(\bmod 11)$ for $k=1,2,3,4, \ldots$ Then

$$
\begin{aligned}
x & \equiv a_{0}+a_{1} \cdot(-1)+a_{2} \cdot(-1)^{2}+a_{3} \cdot(-1)^{3}+a_{4} \cdot(-1)^{4}+\cdots+a_{m} \cdot(-1)^{m} \\
& \equiv a_{0}-a_{1}+a_{2}-a_{3}+a_{4}+\cdots+a_{m}(-1)^{m}(\bmod 11) .
\end{aligned}
$$

Therefore x is divisible by 11 if and only if alternating sum of its digits $a_{0}-a_{1}+a_{2}-$ $a_{3}+a_{4}+\cdots+a_{m}(-1)^{m}$ is divisible by 11 .
6. Proof of Test for Divisibility by 12. Since $12=2^{2} 3$ involves more than one prime, let's start a different way. If a number is divisible by 12 , then in its prime factorization it must contain $2^{2} 3$, possibly along with other prime factors (perhaps even some more 2's and 3 's). Therefore the number must be divisible by both 3 and 4 . Conversely, if a number is divisible by both 3 and 4 , then in its prime factorization it must contain $2^{2} 3$, possibly along with other prime factors (perhaps even some more 2's and 3's). Therefore, a number is divisible by 12 if and only if it is divisible by both 3 and 4 , and this is our divisibility test.

