Counting Faces of Polytopes

Carl Lee
University of Kentucky

James Madison University—March 2015
Convex Polytopes

A convex polytope P is the convex hull of a finite set of points in \mathbb{R}^d.

Example: Cube
Face-Vectors

The face-vector of a d-dimensional polytope is $f = (f_0, f_1, \ldots, f_{d-1})$, where f_j is the number of faces of dimension j. Define also $f_{-1} = f_d = 1$.

Example:
- Cube. $f = (8, 12, 6)$.
Face-Vectors

The face-vector of a d-dimensional polytope is $f = (f_0, f_1, \ldots, f_{d-1})$, where f_j is the number of faces of dimension j. Define also $f_{-1} = f_d = 1$.

Example:

- Cube. $f = (8, 12, 6)$.
- 4-Cube. $f = (16, 32, 24, 8)$.
Face-Vectors

The face-vector of a d-dimensional polytope is $f = (f_0, f_1, \ldots, f_{d-1})$, where f_j is the number of faces of dimension j. Define also $f_{-1} = f_d = 1$.

Example:
- Cube. $f = (8, 12, 6)$.
- 4-Cube. $f = (16, 32, 24, 8)$.

Question: What are the possible face-vectors of polytopes?
Three-Dimensional Polytopes

Theorem (Euler’s Relation)

\[f_0 - f_1 + f_2 = 2\] for convex 3-polytopes.

Example: Cube. \(8 - 12 + 6 = 2\).
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how \(\chi = f_0 - f_1 + f_2 \) changes when the plane hits each vertex.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.

Note: This proof technique generalizes to higher dimensions.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.
- Bottom vertex. χ changes by $1 - 0 + 0 = 1$.

Note: This proof technique generalizes to higher dimensions.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.
- Bottom vertex. χ changes by $1 - 0 + 0 = 1$.
- Intermediate vertex with k incident lower edges. χ changes by $1 - k + (k - 1) = 0$.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.
- Bottom vertex. χ changes by $1 - 0 + 0 = 1$.
- Intermediate vertex with k incident lower edges. χ changes by $1 - k + (k - 1) = 0$.
- Top vertex. If its degree is k, then χ changes by $1 - k + k = 1$.

Total change in χ is therefore 2.

Note: This proof technique generalizes to higher dimensions.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.
- Bottom vertex. χ changes by $1 - 0 + 0 = 1$.
- Intermediate vertex with k incident lower edges. χ changes by $1 - k + (k - 1) = 0$.
- Top vertex. If its degree is k, then χ changes by $1 - k + k = 1$.

Total change in χ is therefore 2.

Note: This proof technique generalizes to higher dimensions.
Three-Dimensional Polytopes

Sketch of proof: Sweep the polytope with a plane in general direction. (Think of immersing in water.) Count vertices, edges, and polygons only when fully swept (under water). Watch how $\chi = f_0 - f_1 + f_2$ changes when the plane hits each vertex.

- Initially $\chi = 0$.
- Bottom vertex. χ changes by $1 - 0 + 0 = 1$.
- Intermediate vertex with k incident lower edges. χ changes by $1 - k + (k - 1) = 0$.
- Top vertex. If its degree is k, then χ changes by $1 - k + k = 1$.

Total change in χ is therefore 2.

Note: This proof technique generalizes to higher dimensions.
Three-Dimensional Polytopes

Other necessary conditions:

- f_0, f_1, f_2 are positive integers
- Theorem (Steinitz): A positive integer vector (f_0, f_1, f_2) is the face-vector of a 3-polytope if and only if the following conditions hold:

 1. $f_0 - f_1 + f_2 = 2$
 2. $f_0 \leq 2f_2 - 4$
 3. $f_2 \leq 2f_0 - 4$
Three-Dimensional Polytopes

Other necessary conditions:

\(f_0, f_1, f_2 \) are positive integers
Three-Dimensional Polytopes

Other necessary conditions:

f_0, f_1, f_2 are positive integers

What else?

Theorem (Steinitz)

A positive integer vector (f_0, f_1, f_2) is the face-vector of a 3-polytope if and only if the following conditions hold.

\[f_0 - f_1 + f_2 = 2, \]

\[f_0 \leq 2f_2 - 4, \]

\[f_2 \leq 2f_0 - 4. \]
Three-Dimensional Polytopes

Other necessary conditions:

\(f_0, f_1, f_2 \) are positive integers

What else?

Theorem (Steinitz)

A positive integer vector \((f_0, f_1, f_2)\) is the face-vector of a 3-polytope if and only if the following conditions hold.

- \(f_0 - f_1 + f_2 = 2 \),
- \(f_0 \leq 2f_2 - 4 \), and
- \(f_2 \leq 2f_0 - 4 \).
Three-Dimensional Polytopes

![Graph showing the relationship between the number of faces of various polytopes in three-dimensional space. The graph plots the number of faces for different polytopes, including Tetrahedron, Triangular Prism, Square Pyramid, Pentagon Pyramid, Octahedron, and Cube. Each polytope is represented by a point on the graph, and the graph shows the relationship between the number of vertices (f_0), edges (f_1), and faces (f_2).]
What is the characterization of face-vectors of 4-polytopes?
Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?

We don’t know!
Four-Dimensional Polytopes

What is the characterization of face-vectors of 4-polytopes?

We don’t know!

But there are some partial results.
Theorem (Euler-Poincaré Formula)

For every d-polytope,

$$
\sum_{j=0}^{d-1} f_j = 1 - (-1)^d
$$
d-Dimensional Polytopes

Theorem (Euler-Poincaré Formula)

For every \(d \)-polytope,

\[
d - 1 \sum_{j=0}^{d-1} f_j = 1 - (-1)^d
\]

Early proofs (pre-Poincaré) relied upon the implicit or unproven assumption of “shellability,” not established until 1970 by Bruggesser and Mani.
Theorem (Euler-Poincaré Formula)

For every d-polytope,

$$
\sum_{j=0}^{d-1} f_j = 1 - (-1)^d
$$

Early proofs (pre-Poincaré) relied upon the implicit or unproven assumption of “shellability,” not established until 1970 by Bruggesser and Mani.

Grünbaum developed a “sweeping-like” proof.
A facet of a d-polytope is a face of dimension $d - 1$.

Theorem (Upper Bound Theorem, McMullen)

The dual to the cyclic d-polytope with n vertices has the largest number of faces of all dimensions of any d-polytope with n facets.
A facet of a d-polytope is a face of dimension $d - 1$.

Theorem (Upper Bound Theorem, McMullen)

The dual to the cyclic d-polytope with n vertices has the largest number of faces of all dimensions of any d-polytope with n facets.
Barnette characterized the sets of various pairs of components of (f_0, f_1, f_2, f_3).
Simple Polytopes

A d-polytope is **simple** if every vertex is incident to precisely d edges.
Simple Polytopes

A d-polytope is simple if every vertex is incident to precisely d edges.

Example: The cube, (as well as the d-cube for all d).
Theorem (Lower Bound Theorem, Barnette)

The “truncation polytope” of dimension \(d \) with \(n \) facets has the smallest number of faces of all dimensions of any simple \(d \)-polytope with \(n \) facets.
h-Vectors

Sweep a simple d-polytope with a hyperplane in general direction.

Orient all edges in the direction of the sweep.

Let h_i be the number of vertices of indegree i.

The **h-vector** is (h_0, h_1, \ldots, h_d).

Note that it is a nonnegative vector of integers.
h-Vectors

Example: Cube
h-Vectors

Example: Cube

\[h = (1, 3, 3, 1) \]
Theorem (McMullen)

\[f_j = \sum_{i=j}^{d} \binom{i}{j} h_i, \quad j = 0, \ldots, d \]
Theorem (McMullen)

\[f_j = \sum_{i=j}^{d} \binom{i}{j} h_i, \quad j = 0, \ldots, d \]

Idea: Every subset of \(j \) incoming edges to a vertex corresponds to an \(i \)-face.
These relations are invertible.

Theorem (McMullen)

\[h_i = \sum_{j=i}^{d} (-1)^{i+j} \binom{j}{i} f_j, \quad i = 0, \ldots, d \]
These relations are invertible.

Theorem (McMullen)

\[h_i = \sum_{j=i}^{d} (-1)^{i+j} \binom{j}{i} f_j, \quad i = 0, \ldots, d \]

This implies that \((h_0, \ldots, h_d)\) is independent of the choice of hyperplane!
“Stanley’s trick” to convert from the face-factor to the h-vector. Consider the face-vector $(36, 108, 141, 102, 43, 10)$.
“Stanley’s trick” to convert from the face-factor to the h-vector. Consider the face-vector $(36, 108, 141, 102, 43, 10)$.

```
1
1 10
1 9 43
1 8 34 102
1 7 26 68 141
1 6 19 42 73 108
1 5 13 23 31 35 36
1 4 8 10 8 4 1
```
Dehn-Sommerville Relations

Reversing the sweep reverses the directions of all edges, and so swaps indegree with outdegree for each vertex.
Dehn-Sommerville Relations

Reversing the sweep reverses the directions of all edges, and so swaps indegree with outdegree for each vertex. The invariance of the h-vector then implies

Theorem (Dehn-Sommerville Relations)
For every simple d-polytope, $h_i = h_{d-i}$ for all i. Besides being a nonnegative symmetric vector of integers, what other conditions must hold for the h-vector?
Dehn-Sommerville Relations

Reversing the sweep reverses the directions of all edges, and so swaps indegree with outdegree for each vertex. The invariance of the h-vector then implies

Theorem (Dehn-Sommerville Relations)

*For every simple d-polytope, $h_i = h_{d-i}$ for all i.***
Dehn-Sommerville Relations

Reversing the sweep reverses the directions of all edges, and so swaps indegree with outdegree for each vertex. The invariance of the h-vector then implies

Theorem (Dehn-Sommerville Relations)

For every simple d-polytope, $h_i = h_{d-i}$ for all i.

Besides being a nonnegative symmetric vector of integers, what other conditions must hold for the h-vector?
Canonical Representations

For positive integers a and i, a can be written uniquely in the form

$$a = \binom{a_i}{i} + \binom{a_{i-1}}{i-1} + \cdots + \binom{a_j}{j}$$

where $a_i > a_{i-1} > \cdots > a_j \geq j \geq 1$. This is the i-canonical representation of a.

For example, the 4-canonical representation of 26 is

$$26 = \binom{6}{4} + \binom{5}{3} + \binom{2}{2}.$$
Canonical Representations

Now define $a^{<i>}$ by adding one to the top and bottom of every binomial coefficient in the i-canonical representation of a.

$$a^{<i>} = \binom{a_i + 1}{i + 1} + \binom{a_{i-1} + 1}{i} + \cdots + \binom{a_j + 1}{j + 1}$$

For example,

$$26^{<4>} = \binom{7}{5} + \binom{6}{4} + \binom{3}{3} = 37.$$

Define also $a^{<0>} = 0$.

Carl Lee (UK)
Counting Faces of Polytopes
James Madison University
21 / 36
For any symmetric vector \((h_0, h_1, \ldots, h_d)\) define \(g_0 = h_0\) and
\(g_i = h_i - h_{i-1}, \quad i = 1, \ldots, \left\lfloor d/2 \right\rfloor.\) (That is to say, compute differences up to half way.)
g-Theorem

For any symmetric vector \((h_0, h_1, \ldots, h_d)\) define \(g_0 = h_0\) and \(g_i = h_i - h_{i-1}, i = 1, \ldots, \lfloor d/2 \rfloor\). (That is to say, compute differences up to half way.)

Theorem (g-Theorem, Billera-L-Stanley, conjectured by McMullen)

A vector \((h_0, h_1, \ldots, h_d)\) of positive integers is the h-vector of a simple d-polytope if and only if the following conditions hold.

- \(h_i = h_{d-1}, i = 0, \ldots, d,\)
- \(g_i \geq 0, i = 0, 1, \ldots, \lfloor d/2 \rfloor, \) and
- \(g_0 = 1 \text{ and } g_{i+1} \leq g_i^{<i>} \) for all \(i = 1, 2, \ldots \lfloor d/2 \rfloor - 1.\)
g-Theorem

For example, if we consider the potential face-vector $f = (36, 108, 141, 102, 43, 10)$ we compute $h = (1, 4, 8, 10, 8, 4, 1)$ and $g = (1, 3, 4, 2)$.

Now h is symmetric, g is nonnegative, $g_0 = 1$, $4 \leq 3^{1^{<1>}}$, and $2 \leq 4^{2^{<2>}}$, so this is a valid face-vector for a simple polytope.
The necessity of the conditions comes from considering a certain graded ring associated with the simple polytope (the Stanley-Reisner ring), and its relationship to the cohomology of a certain complex projective toric variety for which the hard Lefschetz Theorem holds. (McMullen later provided a more geometric proof using his “polytope algebra”.)

The sufficiency of the conditions comes from a direct construction.
Nonsimple Polytopes

It is fruitful to look beyond the face-vectors for nonsimple polytopes, and consider flag-vectors, which count chains of faces of various types and lengths.
Flag f-Vector and cd-Index

Fine; Bayer-Klapper

Example: Triangular bipyramid P.
Flag f-Vector and cd-Index

Example: Triangular bipyramid P.
$f_S = \text{numbers of chains of faces of type } S$.

<table>
<thead>
<tr>
<th>S</th>
<th>f_S</th>
<th>h_S</th>
<th>w_S</th>
<th>ccc</th>
<th>$4cd$</th>
<th>$3dc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flag f-Vector and cd-Index

Example: Triangular bipyramid P.
$f_S = \text{numbers of chains of faces of type } S$.

<table>
<thead>
<tr>
<th>S</th>
<th>f_S</th>
<th>h_S</th>
<th>w_S</th>
<th>ccc</th>
<th>$4cd$</th>
<th>$3dc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flag f-Vector and cd-Index

Example: Triangular bipyramid P.

$f_S = \text{numbers of chains of faces of type } S$.

<table>
<thead>
<tr>
<th>S</th>
<th>f_S</th>
<th>h_S</th>
<th>w_S</th>
<th>ccc</th>
<th>$4cd$</th>
<th>$3dc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>18</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>18</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>36</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$h_S = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T$
Flag f-Vector and cd-Index

Example: Triangular bipyramid P.
$f_S = $ numbers of chains of faces of type S.

<table>
<thead>
<tr>
<th>S</th>
<th>f_S</th>
<th>h_S</th>
<th>w_S</th>
<th>ccc</th>
<th>4cd</th>
<th>3dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>1</td>
<td>1</td>
<td>aaa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>4</td>
<td>baa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>8</td>
<td>aba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>aab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>18</td>
<td>5</td>
<td>bba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>18</td>
<td>8</td>
<td>bab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>4</td>
<td>abb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>36</td>
<td>1</td>
<td>bbb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$h_S = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T$
Flag f-Vector and cd-Index

Example: Triangular bipyramid P.

$f_S = \text{numbers of chains of faces of type } S$.

<table>
<thead>
<tr>
<th>S</th>
<th>f_S</th>
<th>h_S</th>
<th>w_S</th>
<th>ccc</th>
<th>$4cd$</th>
<th>$3dc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>1</td>
<td>1</td>
<td>aaa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>4</td>
<td>baa</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>8</td>
<td>aba</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>aab</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>18</td>
<td>5</td>
<td>bba</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>18</td>
<td>8</td>
<td>bab</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>4</td>
<td>abb</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>012</td>
<td>36</td>
<td>1</td>
<td>bbb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[h_S = \sum_{T \subseteq S} (-1)^{|S|-|T|} f_T \]

\[c = a + b \text{ and } d = ab + ba \]

\[\Phi(P) = c^3 + 4cd + 3dc. \]
Thus the cd-index contains a Fibonacci amount of information.
Thus the cd-index contains a Fibonacci amount of information.

Theorem (Bayer-Klapper)

The cd-index exists!
Thus the cd-index contains a Fibonacci amount of information.

Theorem (Bayer-Klapper)

The cd-index exists!

Theorem (Stanley)

The cd-index is nonnegative.
Thus the **cd**-index contains a Fibonacci amount of information.

Theorem (Bayer-Klapper)

The cd-index exists!

Theorem (Stanley)

The cd-index is nonnegative.

The **cd**-index can be computed by sweeping.
Thus the cd-index contains a Fibonacci amount of information.

Theorem (Bayer-Klapper)

The cd-index exists!

Theorem (Stanley)

The cd-index is nonnegative.

The cd-index can be computed by sweeping.

Ehrenborg has shown how to lift inequalities of cd-indices into new inequalities in higher dimensions.
cd-Index

Thus the cd-index contains a Fibonacci amount of information.

Theorem (Bayer-Klapper)

The cd-index exists!

Theorem (Stanley)

The cd-index is nonnegative.

The cd-index can be computed by sweeping.

Ehrenborg has shown how to lift inequalities of cd-indices into new inequalities in higher dimensions.

We still cannot characterize the set of all cd-indices.
Four-Dimensional Polytopes

What we know about 4-polytopes besides the Euler-Poincaré relation:

- \(f_{02} - 3f_2 \geq 0 \)
- \(f_{02} - 3f_1 \geq 0 \)
- \(f_{02} - 3f_2 + f_1 - 4f_0 + 10 \geq 0 \)
- \(6f_1 - 6f_0 - f_{02} \geq 0 \)
- \(f_0 - 5 \geq 0 \)
- \(f_2 - f_1 + f_0 \geq 0 \)
- \(2(f_{02} - 3f_2) + f_1 \leq \binom{f_0}{2} \)
- \(2(f_{02} - 3f_1) + f_2 \leq \binom{f_2-f_1+f_0}{2} \)
- \(f_{02} - 4f_2 + 3f_1 - 2f_0 \leq \binom{f_0}{2} \)
- \(f_{02} + f_2 - 2f_1 - 2f_0 \leq \binom{f_2-f_1+f_0}{2} \)
Four-Dimensional Polytopes

But there are still some huge gaps in what we know to be true about flag-vectors and the 4-polytopes we know how to construct.
What I am Skipping About Counting Faces

- Shellings
- Winding numbers in Gale transforms
- Dimensions of stress and motion spaces
- Formulas for volumes of polytopes
- The toric h-vector
- Hopf algebras
- Much more...
Thank you!