4 Plane Separation

Here is a summary of the material in Section 2.6 of Kay.

Definition: A set K of points is *convex* if, for all distinct points $A, B \in K$, $\overline{AB} \subseteq K$.

Axiom H-1: Plane Separation Postulate: Let ℓ be any line in any plane P. The set of points of P not on ℓ consists of the union of two subsets H_1 , H_2 of P such that:

- 1. H_1 and H_2 are convex sets.
- 2. $H_1 \cap H_2 = \emptyset$.
- 3. If $A \in H_1$ and $B \in H_2$ then $\ell \cap \overline{AB} \neq \emptyset$.

Definition: In the above situation H_1 and H_2 are *half-planes*, are called the two *sides* of ℓ , and we write $H_1 = H(A, \ell)$ and $H_2 = H(B, \ell)$.

Exercise 4.0.2 Determine whether or not Axiom H-1 holds in each of the geometric worlds \mathbf{E}^2 , \mathbf{S}^2 , \mathbf{U}^2 , and \mathbf{H}^2 .

Lemma: If $B \in \ell$, $A \in H_1$ (one of the two sides of ℓ), and A-B-C, then C is in the opposite side of ℓ .

Lemma: Half-planes are nonempty.

Definition:

- 1. $AB = \{X : A X B\}$, open segment. The book uses the notation (\overline{AB}) .
- 2. $\stackrel{\circ \rightarrow}{AB} = \{X : X = B, A X B, \text{ or } A B X\}, open ray.$ The book uses the notation (AB].
- 3. $[H_1] = H_1 \cup \ell$, where $H_1 = H(P, \ell)$, closed half-plane.

Theorem 2.6.1: If one point of a segment or ray lies in a half-plane H_1 determined by some line ℓ , and the endpoint of the segment or ray itself lies on ℓ , then the entire open segment or open ray lies in H_1 . (This is Theorem 1 of Kay, Section 2.6.)

Corollary: Let *B* and *F* lie on opposite sides of a line ℓ and let *A* and *G* be any two distinct points on ℓ . Then $\overrightarrow{GB} \cap \overrightarrow{AF} = \emptyset$.

Theorem 2.6.2 (Postulate of Pasch): Suppose A, B, and C are any three distinct noncollinear points in a plane, and ℓ is any line which also lies in that plane and passes through an interior point D of segment \overline{AB} but not through A, B, nor C. Then ℓ meets either \overline{AC} at some interior point E, or \overline{BC} at some interior point F, the cases being mutually exclusive. (This is Theorem 2 of Kay, Section 2.6.)

Definition: $\operatorname{int} \angle ABC = H(A, \overrightarrow{BC}) \cap H(C, \overrightarrow{BA})$. I.e., the *interior* of $\angle ABC$ is the set of all points X which simultaneously lie on the A-side of \overrightarrow{BC} and on the C-side of \overrightarrow{BA} .

Theorem 2.6.3: If A and C lie on the sides of $\angle B$, then, except for endpoints, segment $\overline{AC} \subseteq \operatorname{int} \angle B$. If $D \in \operatorname{int} \angle B$, then, except for B, $\overrightarrow{BD} \subseteq \operatorname{int} \angle B$. (This is Theorem 3 of Kay, Section 2.6.)