
6 Triangles

6.1 Congruence

The following is a summary of Section 3.1 of Kay.

De�nition: Given three noncollinear points A;B;C, 4ABC is de�ned to be
AB[BC [AC. Refer to page 132 to con�rm your understanding of the terms
angles of a triangle, sides, vertices, included angle between two sides, included

side between two angles, and side opposite an angle.

De�nition: Given two triangles 4ABC and 4DEF , we de�ne a correspon-

dence between the triangles,4ABC $4DEF to mean the particular pairing
of the vertices

A$ D

B $ E

C $ F

We sometimes denote this correspondence by ABC $ DEF . Such a corre-
spondence between the vertices induces a particular correspondence between
the sides of the two triangles:

AB $ DE

BC $ EF

AC $ DF

and a correspondence between the angles of the two triangles:

6 ABC $ 6 DEF
6 BCA$ 6 EFD
6 CAB $ 6 FDE
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De�nition:

1. Two segments AB and CD are said to be congruent if AB = CD. In
this case we write AB �= CD.

2. Two angles 6 ABC and 6 DEF are said to be congruent if m6 ABC =
m6 DEF . In this case we write 6 ABC �= 6 DEF .

3. Two triangles are congruent if there is some particular ordering of the
vertices yielding a correspondence4ABC $4DEF such that each pair
of corresponding sides is congruent and each pair of congruent angles are
congruent. In this case we write 4ABC �= 4DEF . So six congruences
must hold:

AB �= DE

BC �= EF

AC �= DF
6 ABC �= 6 DEF
6 BCA �= 6 EFD
6 CAB �= 6 FDE

We say that corresponding parts of congruent triangles are congruent, some-
times abbreviated CPCTC (or CPCFC or CPCF when we consider congru-
ence between more general �gures).

Theorem: The congruence relation between triangles is

1. Re
exive: 4ABC �= 4ABC.
2. Symmetric: If 4ABC �= 4DEF , then 4DEF �= 4ABC.
3. Transitive: If 4ABC �= 4DEF and 4DEF �= 4GHI, then
4ABC �= 4GHI.

(This theorem is on page 136 of Kay.)

Of course, these three properties hold for congruences among segments and among angles as
well|a result we must prove and use when proving the above theorem.
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6.2 SAS Congruence

The following is summarized from Sections 3.2{3.3 of Kay.

All of you probably remember some conditions that guarantee congruence between triangles.
One of them is known as SAS (\side-angle-side"):

Axiom C-1: Under the correspondence ABC $ XY Z, let two sides and the
included angle of 4ABC be congruent, respectively, to the corresponding two
sides and the included angle of 4XY Z. (For example,AB �= XY , BC �= Y Z,
and 6 ABC �= 6 XY Z.) Then 4ABC �= 4XY Z under that correspondence.

You might guess that since this is listed as an axiom, it cannot be proved from the other
axioms that we have so far. We can con�rm this by making a model that satis�es all the
other axioms, but not Axiom C-1. This is called taxicab geometry.

1. Points are ordinary points (x; y; z) in three-dimensional Euclidean space R3.

2. Lines are ordinary lines in R3.

3. Planes are ordinary planes in R3.

4. Measures of angles are ordinary measures of angles in R3.

5. The distance between two points P = (x1; y1; z1) and Q = (x2; y2; z2) is de�ned to be

PQ = jx2 � x1j+ jy2 � y1j+ jz2 � z1j:

The book shows that for any three points, A-B-C in ordinary R3 if and only if A-B-C in
taxicab geometry (this is Theorem 1 in Section 3.2).
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Now consider the points
A = (0; 6; 0)
B = (0; 0; 0)
C = (6; 0; 0)
X = (�3; 0; 0)
Y = (0; 3; 0)
Z = (3; 0; 0)

Check that 4ABC is a right triangle with a right angle at B, and that AB = BC = 6.
Check also that 4XYZ is a right triangle with a right angle at Y , and that XY = Y Z = 6.
So two sides and an included angle of these two triangles are congruent, respectively, but
the two triangles are not congruent because AC = 12 while XZ = 6.
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6.3 ASA Congruence

The following is summarized from Section 3.3 of Kay.

Theorem 3.3.1 (ASA): If, under some correspondence, two angles and the
included side of one triangle are congruent to the corresponding angles and in-
cluded side of another, the triangles are congruent under that correspondence.
(This is Theorem 1 of Section 3.3 of Kay.)

45



6.4 SSS Congruence

The following is summarized from Section 3.3 of Kay.

Lemma 3.3.A: Give a point A and a line `, at most one line m perpendicular
to ` contains A, and the point B = ` \m, called the foot of the perpendicular
m, is unique. (This is Lemma A of Section 3.3 of Kay.)

Corollary: A triangle can have at most one right angle.

De�nition: A triangle 4ABC is isosceles if at least two of its sides are
congruent to each other. In this case, the two congruence sides are called the
legs and the third side is called the base. The vertex opposite the base is
sometimes called the vertex of the isosceles triangle.

Lemma 3.3.B: In 4ABC, if AC �= BC, then 6 A �= 6 B. (This is Lemma B
of Section 3.3 of Kay.)

Lemma 3.3.C: In 4ABC, if 6 A �= 6 B, then AC �= BC. (This is Lemma C
of Section 3.3 of Kay.)

From the above two lemmas, we know that a triangle is isosceles if and only if the base
angles are congruent.
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De�nition: Suppose 4ABC is an isosceles triangle and ` is a line. The
following is a list of four possible symmetry properties of the line `:

1. PB: ` is perpendicular to the base.

2. BB: ` bisects the base.

3. PV: ` passes through the vertex.

4. BV: ` bisects the vertex.

Theorem 3.3.2 (Isosceles Triangle Theorem:) In any isosceles triangle,
if a line ` satis�es any two of the four symmetry properties, then it satis�es
all four. In this case we call ` a line of symmetry for the triangle. (This is
Theorem 2 of Section 3.3 of Kay.)

The proof has six parts:

1. Assume PV and BB. Prove PB and BV. (Done in the book.)

2. Assume PV and PB. Prove BB and BV. (Done in the book.)

3. Assume PV and BV. Prove PB and BB. (Homework problem in the book.)

4. Assume PB and BB. Prove PV and BV. (Homework problem in the book.)

5. Assume BV and BB. Prove PV and PB. (PV is immediate, so we are back in the �rst
case.)

6. Assume BV and PB. Prove PV and BB. (PV is immediate, so we are back in the
second case.

Theorem (Perpendicular Bisector Theorem): The set of all points
equidistant from two �xed points A and B is the same as the set of all points
on the perpendicular bisector of segment AB. (This theorem is on page 155
of Kay.)
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Theorem 3.3.3 (SSS Theorem): If, under some correspondence between
their vertices, two triangles have the three sides of one congruent to the corre-
sponding three sides of the other, then the triangles are congruent under that
correspondence. (This is Theorem 3 of Section 3.3 of Kay.)

Theorem 3.3.4 (Existence of Perpendicular from an External Point):
Let line ` and point A no on ` be given. Then there exists a unique line m
perpendicular to ` and passing through A. (This is Theorem 4 of Section 3.3
of Kay.)
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6.5 Triangle Calculations in R2

6.5.1 The Area of a Triangle Using Sines

It's time to put some algebra and trigonometry to use. In this problem we will use the
triangle in Figure 1. In this triangle all angles have measure less than 90�, however, the
results can be proven to be true for general triangles.

The lengths of BC, AC and AB are a, b and c, respectively. Segment AD has length c0 and
DB length c00. Segment CD is the altitude of the triangle from C, and has length h.
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Figure 1: Triangle ABC

The usual formula for the area of a triangle is 1

2
(base)(height).

1. Using the given labeling, Area(ABC) =

2. Since triangle ADC is a right triangle, sinA = so h =

3. Thus, Area(ABC) = 1

2
ch =
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4. What is a formula for Area(ABC) using sinB? Using sinC?? (Note: you will have to
use the altitude from A or B).

The conclusion we have made is that the area of a triangle is one-half the product of the
lengths of any two sides and the sine of the included angle.
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6.5.2 The Law of Sines

Using the triangle in Section 6.5.1, the Law of Sines is:

sinA

a
=

sinB

b
=

sinC

c

The result holds for arbitrary triangles, but we shall prove it for the triangle ABC in Sec-
tion 6.5.1.

1. We showed that the area of this triangle was given by three di�erent formulas. What
are they?

2. From these three formulas, prove the Law of Sines.
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6.5.3 The Law of Cosines

Using the triangle in Section 6.5.1, the Law of Cosines is:

a2 = b2 + c2 � 2bc cosA

1. Show that c0 = b cosA.

2. Verify that c00 = c� c0.

3. Verify that h2 = b2 � (c0)2.

4. Apply the Pythagorean Theorem to triangle CDB, then use the facts above to make
the appropriate substitutions to prove the Law of Cosines.

5. One last question: What happens when you Apply the Law of Cosines in the case that
6 A is a right angle?
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6.5.4 Heron's Formula

In this section, we will put some of our results together to prove yet another formula for the
area of a triangle.

For notation, refer to Figure 1 in Section 6.5.1.

Let s = 1

2
(a+ b+ c) (s is half the perimeter). Heron's Formula for the area of triangle ABC

is:

area(ABC) =
q
s(s� a)(s� b)(s� c)

First we gather some facts:

1. area(ABC) = 1

2
bc sinA (See Section 6.5.1).

2. sin2A+ cos2A = 1, thus sinA =
p
1 � cos2A.

3. a2 = b2 + c2 � 2bc cosA, thus

cosA =
b2 + c2 � a2

2bc
:

(This is the Law of Cosines, proven in Section 6.5.3.)

4. s� a = 1

2
(�a+ b+ c), s� b = 1

2
(a� b+ c), and s� c = 1

2
(a+ b� c).
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Thus, area(ABC) = 1

2
bc sinA (fact 1)

= 1

2

p
1 � cos2A (fact 2)

= 1

2
bc

r
1�

�
b2+c2�a2

2bc

�2
(fact 3)

= 1

4

q
4b2c2 � (b2 + c2 � a2)2

= 1

4

q
4b2c2 � (b4 + c4 + a4 + 2b2c2 � 2a2b2 � 2a2c2)

= 1

4

p
2a2b2 + 2a2c2 + 2b2c2 � a4 � b4 � c4 (�)

Now we work on the right hand side of Heron's Formula:

q
s(s� a)(s� b)(s� c) =

q
1

2
(a+ b+ c)1

2
(�a+ b+ c)1

2
(a� b+ c)1

2
(a+ b� c)

= 1

4

q
(a+ b+ c)(�a+ b+ c)(a� b+ c)(a+ b� c) (��)

To �nish the proof, we must show that (�) = (��).

1. Show that (a+b+c)(�a+b+c)(a�b+c)(a+b�c) = 2a2b2+2a2c2+2b2c2�a4�b4�c4.
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6.5.5 A Cosine Formula

In this section we remind you of a nice formula to get the cosine of the angle using coordinates
of points.

Assume that you have triangle ABC such that the coordinates of the three (distinct) points
A, B, and C are (0; 0), (x1; y1), and (x2; y2), respectively. The Law of Cosines can be used
to prove that

cosA =
x1x2 + y1y2q

x21 + y21

q
x22 + y22

:

1. Use the Law of Cosines to prove this formula. Recall that the length of a line segment

joining points (x1; y1) and (x2; y2) is
q
(x2 � x1)2 + (y2 � y1)2.
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6.5.6 Determinantal Area Formula

Referring to the triangle ABC of the previous section, we can prove another area formula.

area(ABC) =
1

2
jx1y2 � x2y1j = 1

2







x1 x2
y1 y2








(I am using the notation k � k to denote the absolute value of the determinant.)

1. Use area(ABC) = 1

2
bc sinA, the cosine formula from the previous section, and sin2A+

cos2A = 1 to prove this formula.
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6.6 Inequality Theorems

This material is summarized from Sections 3.4 and 3.5 of the Kay.

Theorem 3.4.1 (Exterior Angle Inequality): An exterior angle of a tri-
angle has angle measure greater than that of either opposite interior angle.
(This is Theorem 1 of Section 3.4 of Kay.)

Corollary: The sum of the measures of any two angles of a triangle is less
than 180.

Corollary: A triangle can have at most one right or obtuse angle.

Corollary: The base angles of an isosceles triangle are acute.

Theorem 3.4.2 (Saccheri-Legendre): The sum of the measures of the
three angles of any triangle is less than or equal to 180. (This is Theorem 2
of Section 4.2 of Kay.)

Corollary (Scalene Inequality): If one side of a triangle has greater length
than another side, then the angle opposite the longer side has the great angle
measure, and conversely.

Corollary: If a triangle has an obtuse or a right angle, then the opposite side
is the longest side of the triangle.
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Corollary: The hypotenuse of a right triangle is greater in length that either
leg.

Theorem 3.5.1 (Triangle Inequality): In any triangle, the sum of the
lengths of any two sides exceeds the length of the third side. For distinct
points A;B;C, AB +BC � AC, with equality if and only if A-B-C. (This is
Theorem 1 of Section 3.5 of Kay.)

Corollary (Median Inequality): If M is the midpoint of side BC in
4ABC, then AM < 1

2
(AB +AC).

Theorem 3.5.2 (SAS Inequality): For triangles 4ABC and 4XY Z, if
AB = XY , AC = XZ, then m 6 A > m6 X if and only if BC > Y Z. (This is
Theorem 2 of Section 3.5 of Kay.)
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6.7 Spherical Triangles

1. Suppose Ha, Hb, and Hc are three regions in the plane. Use Venn diagrams to show
the following equality.

(�)
area (Ha [Hb [Hc)
= area (Ha) + area (Hb) + area (Hc)
�area (Ha \Hb)� area (Ha \Hc)� area (Hb \Hc)
+area (Ha \Hb \Hc)

2. What is the area of a sphere of radius 1?

3. A spherical sector is a region on a sphere determined by the intersection of two hemi-
spheres, bounded by two great circles Q and Q0. Assume that the sphere has radius 1.
Express the area of the sector as a function of the measure � of the angle between Q
and Q0. (Assume that the angle is expressed in radians.)

4. Now consider a spherical triangle 4ABC on a sphere of radius 1. (See the following
diagram.) Let the measures of the angles A, B, and C be �, �, and 
, respectively.
Let the sides opposite vertices A, B, and C be labeled a, b, and c, respectively. Each
side determines a great circleQa, Qb, and Qc, respectively. These great circles each de-
termine a hemisphere Ha, Hb, and Hc, respectively, that contains the triangle 4ABC.
The three great circles intersect in pairs on the opposite side of the sphere to determine
three points A0, B0, and C 0 exactly opposite the points A, B, and C, respectively.
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Use the formula (�) (which also works for regions on the sphere) to �nd a formula for
the area of spherical triangle 4ABC in terms of �, �, and 
.
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6.8 More on Angle Sums of Triangles

Recall that we know that the angle sum of any triangle is less than or equal to 180.

Suppose 4ABC is a triangle. Let us say that this is a triangle with defect if its angle sum
is strictly less than 180, and is a triangle without defect if its angle sum is equal to 180.

De�ne a rectangle to be a convex quadrilateral with four right angles.

1. Prove that if a triangle without defect exists, then at least one right triangle with-
out defect exists. Suggestion: Divide the given triangle into two right triangles by
constructing the altitude from the largest angle.

2. Prove that if a triangle with defect exists, then at least one right triangle with defect
exists.

3. Prove that if a rectangle exists, then at least one right triangle without defect exists.

4. Prove that if a right triangle without defect exists, then at least one rectangle exists.

5. Prove that if a rectangle exists with side lengths a and b, and k is any positive integer,
then a rectangle exists with side lengths ka and kb. (You can use a more informal
argument for this.)

6. Prove that if there exists a right triangle with defect, then no rectangle exists. Sugges-
tion: Let 4ABC be a right triangle with defect, having right angle at A. Assume a
rectangle exists. Then a rectangle ADEF can be constructed that is large enough so
that the two legs of the triangle are contained in two of the sides, AD and AF , of the
rectangle. Divide the rectangle into triangles by constructing segments from B and C
to the corner E of the rectangle opposite A.

7. Put the above results together to prove:

(a) If a triangle without defect exists, then every triangle is without defect, and
rectangles exist.

(b) If a triangle with defect exists, then every triangle is with defect, and no rectangles
exist.
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