Sketch of Breadth-First and Depth-First Search

1. Breadth-First Search (First In First Out)

(a) Select a vertex \(v \), give it the empty predecessor label \(p(v) = - \) and the distance label \(d(v) = 0 \), and place it in a queue.

(b) While the queue is not empty, remove vertex \(u \) from the queue. For each unlabeled neighbor \(w \) of \(u \), give it the predecessor label \(p(w) = u \) and the distance label \(d(w) = d(u) + 1 \), and place it in the queue.

When the queue is empty, all the vertices in the component containing \(v \) have been labeled. For each such vertex \(u \), \(d(u) \) is the distance (the length of the shortest path) from \(v \) to \(u \), and a path of that length can be found by working backwards from \(u \) : \(u, p(u), p^2(u), \ldots \).

2. Depth-First Search (Last In First Out)

(a) Select a vertex \(v \), give it the empty predecessor label \(p(v) = - \) and place it in a stack.

(b) While the stack is not empty, examine the top vertex \(u \) of the stack. If \(u \) has no unlabeled neighbors, then remove it from the stack. If \(u \) has at least one unlabeled neighbor, choose one unlabeled neighbor \(w \), give it the predecessor label \(p(w) = u \) and the distance label \(d(w) = d(u) + 1 \), and place it in the stack.

When the stack is empty, all the vertices in the component containing \(v \) have been labeled. For each such vertex \(u \), \(d(u) \) is the length of a path from \(v \) to \(u \) (but not necessarily the shortest path), and a path of that length can be found from \(v \) to \(u \) by working backwards from \(u \) : \(u, p(u), p^2(u), \ldots \).

Note that with either algorithm, you can detect whether or not the component containing \(v \) has any cycles—while processing the vertex \(u \) in step (b), if an already labeled neighbor, say \(w \), other than \(p(u) \) is discovered, then you can trace paths back from \(u \) and \(w \) to a common vertex. These two paths, together with the edge \(uw \), form a cycle. If no such neighbor is found, then the component has no cycle, and is seen to have \(n \) vertices and \(n - 1 \) edges from the construction. If some such neighbor and cycle are found, then the component is seen to have \(n \) vertices and strictly more than \(n - 1 \) edges.