
Geometry Final Exam

INSTRUCTIONS: This is a take-home exam. You may use both of my sets of course
notes, Journey Through Genius, and your course notes, but no other source of information or
assistance, human or non-human, though you may certainly contact me if you have questions.
You should strictly avoid communicating anything at all in any form to the other course
members, not even comments like “I have been having trouble with the first problem but
otherwise I am nearly finished.” Your answers are due noon, Monday, December 10, either
uploaded to the Moodle site as a single file or emailed to lee@ms.uky.edu.

1. Spherical Geometry. In this problem we take a final dip into non-Euclidean geom-
etry and develop an area formula in spherical geometry. Consider a sphere of radius
r.

(a) Prove that the area of a lune (two-sided polygon formed by two half great circles
joining two antipodal points) on this sphere is 2ar2, where a is the measure (in
radians) of the angle at which the two half great circles meet at either end.

(b) Prove that the area of a spherical triangle T on the sphere is r2(a + b + c − π),
where the measures (in radians) of the angles of the triangle are a, b, c. To do
this, describe the triangle as the intersection of three hemispheres A, B, C, with
the angles between them being the angles of the triangle itself. See the diagram
for Exercise 3.67 of Geometry for Middle School Teachers: Companion Problems
for the Connected Mathematics Curriculum, page 55. You may use the fact that
the solution to Exercise 3.66 is area (A∪B∪C) = area (A)+area (B)+area (C)−
area (A ∩ B) − area (A ∩ C) − area (B ∩ C) + area (A ∩ B ∩ C). In the diagram
on page 55 the triangle T of interest is the intersection of three hemispheres. It
is not so easy to see without a physical model, but the uncovered triangle T ′ on
the back is congruent to T , and you may use this fact.

(c) Explain why this shows that the sum of the measures of the angles of any spherical
triangle exceeds π, and that this sum is not the same for all spherical triangles on
a given sphere.

2. Polyhedra. In this problem you will prove something that those who construct
geodesic domes and those who study Buckyballs know. Recall that you already proved
for convex polyhedra that

2E = 3F3 + 4F4 + 5F5 + · · · . (1)
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You also know Euler’s formula,

V − E + F = 2. (2)

Assume that you have a polyhedron such that exactly three faces meet at each vertex,
and every face is either a pentagon or a hexagon (though the faces need not be regular
polygons). It turns out that there are infinitely many such polyhedra—two examples
are the dodecahedron and the soccer ball.

(a) Prove that 3V = 2E.

(b) Use this and Equations (1) and (2) to prove that there must be exactly 12 faces
that are pentagons.

3. Isometries. In this problem we make a connection between complex numbers and
formulas for isometries. You are already familiar with the fact that we can regard
complex numbers a+bi as points (a, b) in the plane. Consider a particular fixed complex
number z on the unit circle centered at the origin. Define the function f(w) = zw that
maps the set of complex numbers into itself by multiplying each complex number w
by z.

(a) Use what you proved about formulas for rotations in the plane to prove that f is
a rotation.

(b) Use this connection between complex multiplication and rotations to find a com-
plex number z 6= 1 such that z3 = 1.

4. Symmetry. In this problem we examine some groups of symmetries of certain objects.

(a) Consider a square centered at the origin with vertices at the points (1, 1), (−1, 1),
(−1,−1), and (1,−1). The eight symmetries of the square are

• I (identity)

• R90 (counterclockwise rotation about the origin by 90 degrees)

• R180 (counterclockwise rotation about the origin by 180 degrees)

• R270 (counterclockwise rotation about the origin by 270 degrees)

• Fy=0 (reflection across the line y = 0)

• Fy=x (reflection across the line y = x)

• Fx=0 (reflection across the x = 0)

• Fy=−x (reflection across the line y = −x)
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Make a “multiplication table” for the eight symmetries of the square. Use the
above ordering of the symmetries to label the eight rows and the eight columns.
For the row labeled by a symmetry X and the column labeled by a symmetry Y ,
the entry in that row and column should be the net result of first performing X
and second performing Y . This composition is denoted Y ◦X.

X

Y
Y ◦X I R90 R180 R270 Fy=0 Fy=x Fx=0 Fy=−x

I
R90

R180

R270

Fy=0

Fy=x

Fx=0

Fy=−x

(b) Using the appropriate subset of the above eight isometries, create a multiplication
table for the symmetries of a non-square rectangle centered at the origin with
vertices (2, 1), (−2, 1), (−2,−1), and (2,−1).

(c) Using the appropriate subset of the eight isometries in (4a), create a multiplication
table for the symmetries of the polygon on the right of the diagram in Exercise 2.89
of Geometry for Middle School Teachers: Companion Problems for the Connected
Mathematics Curriculum, page 31, assuming that it is centered at the origin.

(d) Your tables for (4b) and for (4c) should have the same number of symmetries,
and both should be subtables of the table for the square—that is to say, each is
a subgroup of the group of symmetries of the square. Are these two subgroups
isomorphic—essentially identical in structure? Can the rows and columns be
possibly reordered and the symmetries be relabeled, say, A, B, C, . . ., so that the
two tables become identical?

(e) Now make an addition table for the integers 0, 1, 2, 3 modulo 4.

x

y
x + y 0 1 2 3

0
1
2
3
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Is this table isomorphic to either or both of those in (4b) or (4c)? Can you explain
why?

(f) Now make a multiplication table for the four complex numbers 1,−1, i,−i.

x

y
xy 1 −1 i −i
1

−1
i

−i

Is this table isomorphic to either or both of those in (4b) or (4c)? Can you explain
why?
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