
Isometries

1 Identifying Isometries

1. Modeling isometries as dynamic maps.

2. GeoGebra files: isoguess1.ggb, isoguess2.ggb, isoguess3.ggb,

isoguess4.ggb.

3. Guessing isometries.

4. What can you construct or trace to find the defining elements?
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2 Three Reflection Theorem

1. A point is uniquely determined by its distances from three non-

collinear points — model with GeoGebra.

2. Therefore an isometry is uniquely determined by its action on

three noncollinear points.

3. Three Reflection Theorem: If T and T ′ are congruent triangles,

then T can be mapped onto T ′ using at most three reflections.

GeoGebra file: threereflections.ggb.

4. Therefore every isometry is the composition of zero, one, two, or

three reflections.

5. Similarly, there is a Four Reflections Theorem for isometries in

space.
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3 Compositions of Isometries

1. Zero reflections is the identity isometry.

2. One reflection is a reflection.

3. The composition of two reflections in parallel lines is a trans-

lation perpendicular to the lines by a distance equal to twice

the distance between the two lines. GeoGebra file: tworeflec-

tions.ggb.

4. The composition of two reflections in intersecting lines is a rota-

tion around the point of intersection by an angle twice that of

the angle of intersection. GeoGebra file: tworeflections.ggb.

5. The composition of three reflections is either a reflection or a

glide reflection.

6. The composition of two rotations is either a rotation or a trans-

lation. GeoGebra file: tworotations. Express each rotation as a

double reflection to determine the center and angle of rotation.
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4 Kaleidoscopes

1. Perform repeated reflection, alternating between two given lines.

2. What angles of intersection between the two lines yield only

finitely many images?

3. There are three-dimensional variants of this involving reflections

in three intersecting planes.
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5 Formulas for Isometries

1. Translation by the amount (p, q).
1 0 p

0 1 q

0 0 1



2. Rotation by δ about the point (p, q).
c −s −pc + qs + p

s c −ps− qc + q

0 0 1


where c = cos δ and s = sin δ.

3. Both of these matrices are of the form
c −s u

s c v

0 0 1


where c2 + s2 = 1. Further, given any matrix of the above form,

one can solve for δ, p and q, so any such matrix is an isometry.

4. Both of these matrices have determinant equal to one. These are

the direct isometries.
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5. Reflection across the line with equation px+qy+r = 0, assuming

that p2 + q2 = 1. 
−p2 + q2 −2pq −2pr

−2pq p2 − q2 −2qr

0 0 1



6. Glide reflection by reflecting across the line with equation px +

qy + r = 0 followed by translation by the amount (tq,−tp),

assuming that p2 + q2 = 1.
−p2 + q2 −2pq −2pr + tq

−2pq p2 − q2 −2qr − tp

0 0 1



7. Both of these matrices are of the form
c s u

s −c v

0 0 1


where c2 + s2 = 1. Further, given any matrix of the above form,

one can solve for t, p and q, so any such matrix is an isometry.

8. Both of these matrices have determinant equal to negative one.

These are the indirect isometries.

9. Every isometry is in fact one of the above forms. See Exer-

cise 8.12 in Geometry for Middle School Teachers.
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6 Examples with Maxima

1. Maxima is a free computer algebra system.

2. Creating isometry matrices.

3. Inverses.

4. Compositions.

5. Solving for isometries.
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7 Point-Line Incidence via Isometries

1. Let P be a point and RP be the isometry that is a rotation about

P by 180 degrees.

2. Let L be a line and RL be the isometry that is a reflection in L.

3. Then P is incident to L if and only if

RP ◦RL = RL ◦RP ,

equivalently, if and only if

RPRLRPRL = I.

4. Verification geometrically.

5. Verification algebraically.

6. This idea can be expanded to give an axiomatic system for Eu-

clidean geometry (or other geometries) in terms of groups.
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8 Interlude—Mathematical and Physical Reflections

1. Why does the image in a mirror appear to be in the location

defined by a mathematical reflection?

2. If the human eye detects a set of light rays that, when traced

backward, appear to emanate from a common point, then the

brain makes the interpretation that that common point is the

origin of the light rays.

3. GeoGebra file: physicalreflection.ggb.

4. Because the atmosphere can bend the path of light rays, The

same phenomenon accounts for the apparent presence of the sun

just above the horizon after it has actually set below the horizon.
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9 Applying Isometries to Figures Defined by Equa-

tions

1. We are accustomed to applying an isometry to a drawn figure in

the plane, or to individual points via formulas, but what about

to figures described by equations?

2. Example: Apply the translation by the amount (p, q) to the

circle whose equation is x2 + y2 = 100. The isometry is given by

x = x + p, y = y + q. Thus x = x− p, y = y− q. Substituting

yields (x−p)2+(y−q)2 = 100 for the equation of the translated

circle.

3. In general, if we translate the graph of a function described by

y = f (x) by the amount (p, q) then we get the new graph de-

scribed by y − q = f (x− p). Thinking of things this way helps

eliminate the necessity of memorizing rules for how to shift up

or down or right or left.
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4. Completing the Square and the Quadratic Formula are merely

using translations to simplify equations of parabolas!

5. Example: Consider the parabola described by

y = 2x2 − 12x + 13.

Let’s find a translation of the form x = x+p so that the equation

of the translated parabola has no “x” term. Using x = x− p we

get

y = 2(x− p)2 − 12(x− p) + 13

which simplifies to

y = 2x2 + (−4p− 12)x + (2p2 + 12p + 13).

We want to choose p so that −4p−12 is zero, so choose p = −3.

In other words, translating 3 units to the left results in a parabola

centered on the y-axis. Then the equation further simplifies to

y = 2x2 − 5.

Finding the two roots (x-intercepts) is now easy:

x = ±
√√√√√5

2
.

Translating the parabola and its roots back to the original posi-

tion gives

x = x− p = 3±
√√√√√5

2
.
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6. Let’s do this in general. Consider the parabola described by

y = ax2+bx+c. Using the translation x = x+p and substituting

x = x− p this becomes

y = a(x− p)2 + b(x− p) + c

which simplifies to

y = ax2 + (b− 2ap)x + (ap2 − bp + c).

We want b − 2ap to be zero, so choosing p = b
2a results in

a parabola centered on the y-axis. With this choice of p the

equation then simplifies to

y = ax2 +
−b2 + 4ac

4a
.

The roots are simple to calculate:

x = ±
√

b2 − 4ac

2a
.

Translating the parabola and its roots back to its original posi-

tion gives the roots

x = x− p = − b

2a
±
√

b2 − 4ac

2a
,

which is the quadratic formula.
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7. Of course, we don’t have to use only translations to simplify

things. In general, if we have a figure described by an equation

of the form f (x, y) = 0 we might consider applying an isometry

with some rule mapping (x, y) to (x, y), and then substituting

into the equation, choosing our isometry wisely so that after-

wards things look simpler.

8. Hold on tight—I am now going to do an example of this that I was

taught in my public high school (Baltimore County, Maryland)

eleventh grade course in Trigonometry/Analytic Geometry by

Mr. Laferty.
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9. Problem: Identify the curve given by the equation

73x2 + 52y2 − 72xy − 290x + 280y + 325 = 0.

We will try a rotation about the origin so that after the rotation

there will be no “xy” term. A rotation about the origin by an

angle δ with sin δ = s and cos δ = c is given by:

x = cx− sy

y = sx + cy

Solving for x and y is equivalent to rotating by −δ, hence

x = cx + sy

y = −sx + cy

If we substitute for x and y in the original equation, the coeffi-

cient of xy can be calculated to be

42cs− 72(c2 − s2).

We want this to equal zero, so we want

72

42
=

12

7
=

cs

c2 − s2
.

But this latter expression, by the double angle formulas, equals

1
2 sin 2δ

cos 2δ
=

1

2
tan 2δ.

So tan 2δ = 24/7. Drawing a right triangle with legs 24 and

7, and using the Pythagorean Theorem to determine that the
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hypotenuse is 25, we calculate that cos 2δ = 7/25. Hence, using

the half-angle formula,

s = sin δ =

√√√√√1− cos 2δ

2
=

3

5
,

so c = cos δ =
√

1− sin2 δ = 4/5.

Using these values for c and s in the desired rotation, and sub-

stituting into the original equation, this simplifies to

100x2 − 400x + 25y2 + 50y + 325 = 0,

or

4x2 − 16x + y2 + 2y + 13 = 0.

Completing squares:

4x2 − 16x + 16 + y2 + 2y + 1 + 13 = 16 + 1

4(x− 2)2 + (y + 1)2 = 4

So finally we have

(x− 2)2

1
+

(y + 1)2

4
= 1,

which is the equation of an ellipse centered at the point (2,−1).

We could further translate it by the amount (−2, 1) to obtain

the ellipse
x2

1
+

y2

4
= 1
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centered at the origin. Now it is possible to sketch the curve in

its new position. By using the inverses of the translation and the

rotation (in that order) we can sketch the curve in its original

position.
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10. One final comment—we can use the above technique to verify

that certain figures have certain symmetries. For example, if

we consider the figure described by the equation xy = 100 and

apply the isometry x = −x, y = −y we see that the equation is

unchanged: xy = 100. This this figure is symmetric under 180

degree rotation about the origin. Also, if we apply the isometry

x = y, y = x we again see that the equation is unchanged. Thus

this figure is symmetric under the action of reflection across the

line y = x.

11. Of course, all of these ideas can be extended into three and higher

dimensions!
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