
Notes on Geometry

Carl W. Lee
University of Kentucky

Summer 2004

Think Deeply of Simple Things
Motto of Ross Program at Ohio State University

1



Contents

1 Some Ways to Increase Understanding 9

2 Review 10

3 A Puzzle 11

4 Generating Questions to Think Deeply 13

4.1 Some Triangle Concurrencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Triangle Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Three-Dimensional Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Axiomatic Systems 18

5.1 Features of Axiomatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Personal Musings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.4 Another Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Finite Projective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.6 Kirkman’s Schoolgirl Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.7 Categoric and Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



5.8 Other Axiomatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.9 Euclidean Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Points, Lines and Incidence 30

6.1 Incidence Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Incidence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Geometrical Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 The Analytical Euclidean Plane: E2 . . . . . . . . . . . . . . . . . . . 33

6.3.2 The Sphere: S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3.3 The Punctured Sphere: U2 . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.4 The Open Hemisphere: H2 . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3.5 The Projective Plane: P2 . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.6 The Affine Plane: A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.7 The First Vector Plane: V2 . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.8 The Second Vector Plane: W2 . . . . . . . . . . . . . . . . . . . . . . 40

6.3.9 Analytical Euclidean Space: E3 . . . . . . . . . . . . . . . . . . . . . 41

6.3.10 Analytical Euclidean 4-Space: E4 . . . . . . . . . . . . . . . . . . . . 42

6.3.11 Analytical Euclidean n-Space: En . . . . . . . . . . . . . . . . . . . . 43

7 Coordinates 44

3



7.1 The Analytical Euclidean Plane E2 . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.1 Equations of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1.3 Equations of Lines via Determinants . . . . . . . . . . . . . . . . . . 48

7.1.4 Testing Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.5 Intersections of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1.6 Parametric Equations of Lines . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Some Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Definitions of Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . 52

7.2.2 Angles in Different Quadrants . . . . . . . . . . . . . . . . . . . . . . 54

7.2.3 Some Familiar Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.4 Some Basic Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.5 Polar Coordinates of Points in E2 . . . . . . . . . . . . . . . . . . . . 59

7.2.6 Alternate Definitions of Sine and Cosine . . . . . . . . . . . . . . . . 60

7.2.7 Definitions of Tangent, Secant, and Cosecant . . . . . . . . . . . . . . 61

7.2.8 The Area of a Triangle Using Sines . . . . . . . . . . . . . . . . . . . 63

7.2.9 The Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.10 The Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.11 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4



7.2.12 Heron’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2.13 A Cosine Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.14 Determinantal Area Formula . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Analytical Euclidean Space E3 . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Other Geometrical Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4.1 The Sphere S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4.2 The Punctured Sphere U2 . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4.3 The Open Hemisphere H2 . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4.4 The Projective Plane P2 . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4.5 Analytical Euclidean 4-Space: E4 . . . . . . . . . . . . . . . . . . . . 80

7.4.6 Analytical Euclidean n-Space: En . . . . . . . . . . . . . . . . . . . . 81

8 Distance 82

8.1 The Metric Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2 Distance in E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.1 The Distance Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.2 What is the Distance to the Horizon? . . . . . . . . . . . . . . . . . . 92

8.2.3 The Snowflake Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.4 The Longimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2.5 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5



8.3 Distance in E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.1 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3.2 The Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3.3 The Global Positioning System (GPS) . . . . . . . . . . . . . . . . . 102

8.3.4 Earthquake Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Distance in S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.1 Distance Around a Circle . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.2 Distance Axioms in S2 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.4.3 What is the Size of the Earth? . . . . . . . . . . . . . . . . . . . . . . 109

8.4.4 Eratosthenes’ Estimate of the Size of the Earth . . . . . . . . . . . . 110

8.5 Distance in U2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5.1 The Distance Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5.2 Stereographic Projection . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6 Distance in H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.7 Space-Time Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Angles 118

9.1 The Angle Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 The Plane Separation Axiom 122

6



11 Area and Volume 124

11.1 Area in E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.2 Area in S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.3 Volume in E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12 Polyhedra 129

12.1 Initial Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.2 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.3 Euler’s Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.3.1 Initial Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.3.2 Some Basic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12.4 Enumerating Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.4.1 Some More Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12.4.2 Angle Deficit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

13 Congruence 138

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.2 Isometries in a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13.3 Isometries in a Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

13.4 Isometries in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7



13.5 Axioms for Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

13.6 Isometries in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

14 Euclidean and Non-Euclidean Geometry 147

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

14.2 Hyperbolic Geometry: Consequences of Assuming P-2 . . . . . . . . . . . . . 149

15 Dimension 151

15.1 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

15.2 Fractional Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8



1 Some Ways to Increase Understanding

When thinking about a problem or idea:

1. Can you build a physical model?

2. Can you build a virtual model?

3. What are some generalizations?

4. What are analogs in higher dimensions?

5. What are analogs on the sphere?

6. What are some physical (“real-life”) applications?

7. What other areas of mathematics are needed to increase understanding?

8. What other areas of mathematics in turn benefit from this understanding?

9. What is its history?

10. How is it introduced and developed in the K–16 curriculum?

11. What questions can you ask a student to probe or enhance his/her understanding?

12. What are some good related outside readings?
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2 Review

Exercise 2.0.1 Using some standard texts in geometry, re-familiarize yourself with some
results in geometry.

Exercise 2.0.2 Illustrate some results with Wingeom, Geometer’s Sketchpad or physical
models. Some ideas:

1. Sum of the measures of the angles of a triangle.

2. Ratio of the circumference of a circle to its diameter. Ratio of the area of a circle to
the square of its radius.

3. Measures of central and inscribed angles of circles.

4. Crossing secants of circles.

5. Pythagorean theorem.

6. Perpendicular bisectors, angle bisectors, medians and altitudes of triangles, and some
associated circles.

Exercise 2.0.3 Explain the difference between an axiom, a postulate, a definition, a lemma,
a proposition, a theorem, and a corollary.

Exercise 2.0.4 According to the NCTM standards, identify where these results would be
introduced and then further developed in the K–12 curriculum. What about the college
curriculum?
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3 A Puzzle

The following message has been received from outer space. You believe it is from an alien
intelligence with a sincere desire to communicate. What do you make of it? The message
contains mixtures of 24 different symbols, which we will represent here, for convenience, by
the letters from A through Z (omitting O and X). (Each symbol is presumably radioed by a
combination of beeps, but we need not be concerned with those details.) The punctuation
marks are not part of the message but indications of time lapses. Adjacent letters are sent
with short pauses between them. A space between letters means a longer pause. Commas,
semicolons, and periods represent progressively longer pauses. The longest time lapses come
between paragraphs, which are numbered for the reader’s convenience; the numbers are not
part of the message.

1. A. B. C. D. E. F. G. H. I. J. K. L. M. N. P. Q. R. S. T. U. V. W. Y. Z.

2. A A, B; A A A, C; A A A A, D; A A A A A, E; A A A A A A, F; A A A A A A A,
G; A A A A A A A A, H; A A A A A A A A A, I; A A A A A A A A A A, J.

3. A K A L B; A K A K A L C; A K A K A K A L D. A K A L B; B K A L C; C K A
L D; D K A L E. B K E L G; G L E K B. F K D L J; J L F K D.

4. C M A L B; D M A L C; I M G L B.

5. C K N L C; H K N L H. D M D L N; E M E L N.

6. J L AN; J K A L AA; J K B L AB; AA K A L AB. J K J L BN; J K J K J L CN. FN
K G L FG.

7. B P C L F; E P B L J; F P J L FN.

8. F Q B L C; J Q B L E; FN Q F L J.

9. C R B L I; B R E L CB.

10. J P J L J R B L S L ANN; J P J P J L J R C L T L ANNN. J P S L T; J P T L J R
D.

11. A Q J L U; U Q J L A Q S L V.
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12. U L WA; U P B L WB; AWD M A L WD L D P U. V L WNA; V P C L WNC. V Q
J L WNNA; V Q S L WNNNA. J P EWFGH L EFWGH; S P EWFGH L EFGWH.

13. GIWIH Y HN; T K C Y T. Z Y CWADAF.

14. D P Z P WNNIB R C Q C.
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4 Generating Questions to Think Deeply

4.1 Some Triangle Concurrencies

Exercise 4.1.1

1. Why are the perpendicular bisectors of a triangle concurrent?

2. Why is a perpendicular bisector of a segment equal to the set of points equidistant
from the endpoints of the segment?

3. Why is the point of concurrency the center of the circumscribed circle?

4. What is the analog in three-dimensions?

5. Make some physical and virtual models of the two and three-dimensional versions.

Exercise 4.1.2

1. Why are the angle bisectors of a triangle concurrent?

2. Why is an angle bisector of an angle equal to the set of points equidistant from the
two rays of the angle?

3. Why is the point of concurrency the center of the inscribed

4. What is the analog in three-dimensions?

5. What is the analog to the angle bisector?

6. Make some physical and virtual models of the two and three-dimensional versions.

7. According to the NCTM standards, identify where these results would be introduced
and then further developed in the K–12 curriculum. What about the college curricu-
lum?
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4.2 Triangle Congruence

Exercise 4.2.1 What are the standard triangle congruence theorems?

Exercise 4.2.2 In each case, why isn’t the triangle determined with fewer pieces of infor-
mation?

Exercise 4.2.3 Do other combinations work? If they don’t work all of the time, when do
they work?

Exercise 4.2.4 Why are the congruence theorems true?

Exercise 4.2.5 Given sufficient pieces of information to determine a triangle, how can the
remaining pieces be determined? Via algebra? Via Wingeom or Sketchpad? Since con-
gruent triangles have equal area, how can the area be determined from the given pieces of
information?

Exercise 4.2.6 When are the given data consistent or inconsistent to determine a triangle?

Exercise 4.2.7 The coordinates of the three vertices determine the side lengths, and hence
the triangle, so is there a formula for the area of the triangle in terms of the coordinates?

Exercise 4.2.8 What are some physical applications?

Exercise 4.2.9 Which results hold for triangles on a sphere? What are triangles on a
sphere? How do we make sense of segments and segment congruence? How do we make
sense of angles and angle congruence?

Exercise 4.2.10 What are analogous results in three dimensions? What is the analog of a
triangle? What is an angle? What is angle measure? Are two angles congruent if and only
if they have the same measure? Make models.

14



Exercise 4.2.11 What are analogous results for other two dimensional shapes? For quadri-
laterals? Illustrate with Wingeom or Sketchpad.

Exercise 4.2.12 According to the NCTM standards, identify where these results would be
introduced and then further developed in the K–12 curriculum. What about the college
curriculum?
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4.3 The Pythagorean Theorem

Exercise 4.3.1 Illustrate with Wingeom or Sketchpad. Illustrate (some special cases) with
Polydron or other physical models.

Exercise 4.3.2 How is the theorem proved? What about the converse?

Exercise 4.3.3 What happens if instead of squares erected on the three sides of a right
triangle, other shapes are used instead?

Exercise 4.3.4 What are some physical applications?

Exercise 4.3.5 What if the triangle is not right?

Exercise 4.3.6 Is there a three-dimensional analog? What is the analog of a right triangle?
Test your conjectures with some specific examples.

Exercise 4.3.7 Is there a spherical analog? What is the analog of a right triangle? Test
your conjectures with some specific examples.

Exercise 4.3.8 Is there an analog for quadrilaterals?

Exercise 4.3.9 What are some integer Pythagorean triples? How can they be found?

Exercise 4.3.10 If the two sides of the right triangle are parallel to the coordinate axes in
a coordinate system, how can you get the length of the sides and the hypotenuse? How does
this relate to the distance formula for the length of a segment? What if the two points are
joined by a curve instead of a segment?

Exercise 4.3.11 According to the NCTM standards, identify where these results would be
introduced and then further developed in the K–12 curriculum. What about the college
curriculum?
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4.4 Three-Dimensional Shapes

Exercise 4.4.1 What are three-dimensional analogs of circles, triangles, isosceles triangles,
equilateral triangles, scalene triangles, quadrilaterals, trapezoids, isosceles trapezoids, paral-
lelograms, rectangles, rhombi, squares.

Exercise 4.4.2 What are three-dimensional analogs of regular polygons?

17



5 Axiomatic Systems

5.1 Features of Axiomatic Systems

One motivation for developing axiomatic systems is to determine precisely which properties
of certain objects can be deduced from which other properties. The goal is to choose a
certain fundamental set of properties (the axioms) from which the other properties of the
objects can be deduced (e.g., as theorems). Apart from the properties given in the axioms,
the objects are regarded as undefined.

As a powerful consequence, once you have shown that any particular collection of objects
satisfies the axioms however unintuitive or at variance with your preconceived notions these
objects may be, without any additional effort you may immediately conclude that all the
theorems must also be true for these objects.

We want to choose our axioms wisely. We do not want them to lead to contradictions;
i.e., we want the axioms to be consistent. We also strive for economy and want to avoid
redundancy—not assuming any axiom that can be proved from the others; i.e., we want the
axiomatic system to be independent. Finally, we may wish to insist that we be able to prove
or disprove any statement about our objects from the axioms alone. If this is the case, we
say that the axiomatic system is complete.

We can verify that an axiomatic system is consistent by finding a model for the axioms—a
choice of objects that satisfy the axioms.

We can verify that a specified axiom is independent of the others by finding two models—one
for which all of the axioms hold, and another for which the specified axiom is false but the
other axioms are true.

We can verify that an axiomatic system is complete by showing that there is essentially only
one model for it (all models are isomorphic); i.e., that the system is categorical.

For more details and examples, see Kay, Section 2.2.
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5.2 Examples

Exercise 5.2.1 Let’s look at three examples of axiomatic systems for a collection of com-
mittees selected from a set of people. (Of course, we may use the word “points” instead of
“people” and “lines” instead of “committees,” because other than the properties imposed
by the axioms these terms are to be taken as undefined.) In each case, determine whether
the axiomatic system is consistent or inconsistent. If it is consistent, determine whether the
system is independent or redundant, complete or incomplete.

1. (a) There is a finite number of people.

(b) Each committee consists of exactly two people.

(c) Exactly one person is on an odd number of committees.

2. (a) There is a finite number of people.

(b) Each committee consists of exactly two people.

(c) No person serves on more than two committees.

(d) The number of people who serve on exactly one committee is even.

3. (a) Each committee consists of exactly two people.

(b) There are exactly six committees.

(c) Each person serves on exactly three committees.

Exercise 5.2.2 Construct a polyhedron and then create list of consistent, independent, and
complete properties to specify it, in terms of its faces, edges, vertices, angles, etc.

19



5.3 Personal Musings

I believe that there are several different levels at which people (and mathematicians) may
think about axiomatic systems. Let me elaborate a bit with respect to views of geometry.

Levels:

1. We have an image in our minds of geometrical objects, and we regard geometry as a
(large) collection of facts and properties, not necessarily organized in any particular
way.

2. We have an image in our minds of geometrical objects, and we organize the facts from
simplest to more complicated, with later facts provable from earlier facts. The simplest
facts are regarded as “self-evident” and therefore exempt from proof.

3. We have an image in our minds of geometrical objects, and we organize facts as in (2),
referring to the simplest, unproven facts, as the axioms. We recognize that despite our
mental image, we cannot use any properties in our proofs that are not derivable from
the axioms.

4. We have an image in our minds of geometrical objects, and we organize facts as in (3).
We further recognize that despite our mental image, objects and relations specified in
the axioms (such as “point”, “line”, “incidence”, “between”) are truly undefined, and
that therefore in any other model in which we attach an interpretation to the undefined
objects and relations for which the axioms hold, all subsequent theorems will hold also.

5. We have an image in our minds of geometrical objects, and we organize facts as in (4).
But we further become familiar with and work with alternative models, and models of
alternative axiom systems.

6. We have an image in our minds of geometrical objects, and we organize facts as in (5).
But we fully recognize that all proofs in an axiom system are completely independent
of any image in anyone’s mind. (If we receive a set of axioms from an alien race about
its version of geometry, we realize that we can prove the theorems without knowing
what is in the minds of the aliens.)

7. We regard the formal system of axioms and theorems as all that there is—there is
“nothing more out there” in terms of mathematical reality. (The aliens may in fact
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have nothing in their heads but operate formally with the symbols and procedures of
formal logic.)

I distinctly remember the struggle I had in high school of trying to understanding the
teacher’s explanation of levels (3) and (4), but I don’t believe I really understood levels
(4) and (5) until college. I believe that I presently operate in practice in levels (5) and (6).
Computer automated proof systems (but not necessary those who use them) operate at level
(7).
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5.4 Another Example

Contact has been established with an alien race (the Carrollians), and the following axiomatic
system for is conveyed to you by them.

1. Given any two different toves, there is exactly one borogove that gimbles with both of
them.

2. Given any two different borogoves, there is exactly one tove that gimbles with both of
them.

3. There exist four toves, no three of which gimble with a common borogove.

4. The total number of toves is finite.

5. There exists a borogove that gimbles with exactly three toves.

Exercise 5.4.1 Make a model for Carrollian geometry.

Exercise 5.4.2 Make some conjectures about theorems in Carrollian geometry, and prove
or disprove them.

Exercise 5.4.3 Are the axioms for Carrollian geometry consistent? Independent? Com-
plete?

Exercise 5.4.4 Show that the following interpretation is a valid model for Carrollian ge-
ometry, and then verify that your theorems indeed hold for this model. (1) Toves are triples
of the form (x, y, z) where each of x, y, and z are 0 or 1, and not all of them are zero. (2)
Borogoves are triples of the form (x, y, z) where each of x, y, and z are 0 or 1, and not all of
them are zero. (3) A tove (x1, y1, z1) gimbles with a borogove (x2, y2, z2) if x1x2 +y1y2 + z1z2

is even.

Exercise 5.4.5 Drop axiom (5) from Carrollian geometry and try to come up a model for
this axiomatic system that is not isomorphic to the previous one. Is the resulting system
independent?
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Exercise 5.4.6 Drop axiom (5) from Carrollian geometry and prove that if there exists a
borogove that gimbles with exactly q + 1 toves, then every borogove gimbles with exactly
q + 1 toves, every tove gimbles with exactly q + 1 borogoves, there is a total of q2 + q + 1
toves, and there is a total of q2 + q + 1 borogoves.

Exercise 5.4.7 Drop axiom (5) from Carrollian geometry and find a model containing ex-
actly 13 toves.

23



5.5 Finite Projective Geometry

Dropping axiom (5) from Carrollian geometry (and, if you wish, replacing the words “toves”
with “points”, “borogoves” with “lines,” and “gimbles with” with “is incident to”), we define
structures called finite projective planes. I have a game called Configurations that is designed
to introduce the players to the existence, construction, and properties of finite projective
planes. When I checked in January 2002 the game was available from WFF ’N PROOF
Learning Games Associates, http://www.wff-n-proof.com, 402 E. Kirkwood, Fairfield, IA
52556, Phone (641) 472-0149, Fax (641) 472-0693, for a cost of $25.00.

Here are examples of some problems from this game:

Exercise 5.5.1 In each box below write a number from 1 to 7, subject to the two rules: (1)
The three numbers in each column must be different; (2) the same pair of numbers must not
occur in two different columns.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row 1
Row 2
Row 3

Exercise 5.5.2 Use the solution to the above problem to label the seven points of the
following diagram with the numbers 1 through 7 so that the columns of the above problem
correspond to the triples of points in the diagram below that lie on a common line or circle.
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Exercise 5.5.3 Play the game of SET. (This game can be found, for example, on
www.amazon.com under the name “SET Game” by SET Enterprises, Inc.) Find some ways
to think of this game as a model for a set of axioms for points, lines, and planes.
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5.6 Kirkman’s Schoolgirl Problem

Exercise 5.6.1 Solve the following famous puzzle proposed by T. P. Kirkman in 1847:

A school-mistress is in the habit of taking her girls for a daily walk. The girls are
fifteen in number, and are arranged in five rows of three each, so that each girl
might have two companions. The problem is to dispose them so that for seven
consecutive days no girl will walk with any of her school-fellows in any triplet more
than once. (Ball and Coxeter, Mathematical Recreations and Essays, University
of Toronto Press, 1974, Chapter X.)
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5.7 Categoric and Complete

In the book Geometry: An Introduction by Günter Ewald, a distinction is made between
complete and categoric. An axiomatic system is called categoric if all models for it are
isomorphic. An axiomatic system is called complete if no model for it can be extended by
adding “new objects in such a way that all previous relations are carried over and such that
all previous axioms remain true in the enlarged system.” Here are two exercises from that
book:

Exercise 5.7.1 Show that the axioms of a group together with the following axiom are
complete but not categoric: “The group contains precisely four elements.”

Exercise 5.7.2 Show that the axioms of a group together with the following axiom are
categoric but not complete: “The group has infinitely many elements and consists of all
powers of a single group element.”
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5.8 Other Axiomatic Systems

For perhaps understandable reasons most non-mathematics majors associate axiomatic sys-
tems exclusively with the realm of geometry, not realizing its all-pervading presence in math-
ematics.

Exercise 5.8.1 Look up examples of other axiomatic systems. Here are some examples:

1. Integers

2. Groups

3. Fields

4. Metric spaces

5. Topological spaces

6. Probability spaces

7. Graphs

8. Matroids
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5.9 Euclidean Geometry

Exercise 5.9.1 Photocopy Kay, pp. A-56, A-57, A-62–A-66. Note that the Axioms fall into
several groups: I, D, A, H, C, and P (Axiom P-1 is on page A-65). By cutting and pasting,
group the theorems and corollaries (through the Two-Secant Theorem on page A-66) beneath
the axioms upon which they depend.

Exercise 5.9.2 Study the proofs of the Exterior Angle Inequality and the Saccheri-Legendre
Theorem on pages 156–160. Then study the proofs of the Euclidean Exterior Angle Theorem
and the Corollary on pages 217–218. What is the significance of these results from the
perspective of axiomatic systems?

Exercise 5.9.3 Which theorem provides the basis for the possibility of defining the six
trigonometric functions for a right triangle?

Exercise 5.9.4 Which theorems provide the basis for the construction of Cartesian coordi-
nate system?

Exercise 5.9.5 Select a theorem and make a directed graph showing which previous results,
and ultimately which corollaries, it depends upon.

Exercise 5.9.6 How is the concept of an axiomatic system introduced and developed in the
K–16 curriculum?

29



6 Points, Lines and Incidence

Exercise 6.0.7 How are the notions of points, lines, and incidence introduced and developed
in the K–16 curriculum?

6.1 Incidence Axioms

Here are the Incidence Axioms, slightly reworded from Kay, Section 2.3. Lines and planes
are certain subsets of points. We know nothing further about points, lines and planes beyond
that which is specified in the axioms; i.e., they are the undefined terms.

Axiom I-1: Given two distinct points, there is exactly one line containing
both of them.

Axiom I-2: Given three distinct noncollinear points (three points not con-
tained in a common line), there is exactly one plane containing all three
of them.

Axiom I-3: If two distinct points are contained in a plane, then any line
containing both of these points is contained in that plane.

Axiom I-4: If two planes have a nonempty intersection, then their intersec-
tion is a line.

Axiom I-5: Space contains at least four noncoplanar points (four points not
contained in a common plane) and contains at least three noncollinear
points. Each plane contains at least three noncollinear points. Each line
contains at least two distinct points.

30



6.2 Incidence Theorems

Notation: If A and B are two distinct points, then
←→
AB denotes the unique line containing

both A and B.

Here are two theorems from Section 2.3, which can be proved directly from the Incidence
Axioms.

Theorem 6.2.1 If C ∈←→
AB, D ∈←→

AB and C �= D, then
←→
CD=

←→
AB.

Theorem 6.2.2 If two distinct lines � and m meet (have nonempty intersec-
tion), then their intersection is a single point. If a line meets a plane and is
not contained in that plane, their intersection is a single point.

Exercise 6.2.1 Prove these Theorems.

Exercise 6.2.2 Do the Incidence Axioms imply that there must be an infinite number of
points? If not, find two different models for the Incidence Axioms that each have a finite
number of points. Construct physical or virtual models of them.
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6.3 Geometrical Worlds

Exercise 6.3.1 Here are some geometrical “worlds.” In each case we make certain choices
on what we will call POINTS, LINES and PLANES. (I capitalize these words as a reminder
these may not appear to be our “familiar” points, lines and planes.) In each case you should
begin thinking about which of the incidence axioms hold for our choice of POINTS, LINES
and PLANES. In particular, does Axiom I-1 hold? It would be helpful for experimentation
to have some spherical surfaces to draw on, such as (very smooth) tennis balls, ping-pong
balls, oranges or Lénárt spheres.

Also, consider the question of whether or not the following property holds:

For a given LINE and a given POINT not on that LINE, there is a unique LINE containing
the given POINT that does not intersect the given LINE.
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6.3.1 The Analytical Euclidean Plane: E2

POINTS: Ordered pairs (x, y) of real numbers; i.e., elements of R2.

LINES: Sets of points that satisfy an equation of the form ax + by + c = 0, where a, b and
c are real numbers; and further a and b are not both zero.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.2 The Sphere: S2

POINTS: All points in R2 that lie on a sphere of radius 1 centered at the origin.

LINES: Circles on the sphere that divide the sphere into two equal hemispheres. (Such
circles are called great circles.)

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.3 The Punctured Sphere: U2

POINTS: All points in R2 that lie on a sphere of radius 1 centered at the origin, with the
exception of the point N = (0, 0, 1) (the “North Pole”), which is excluded.

LINES: Circles on the sphere that pass through N , excluding the point N itself.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.

N
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6.3.4 The Open Hemisphere: H2

POINTS: All points in R2 that lie on the upper hemisphere of radius 1 centered at the
origin with strictly positive z-coordinate. (So the “equator” of points with z-coordinate
equaling 0 is excluded.)

LINES: Semicircles (not including endpoints) on this hemisphere that are perpendicular to
the “equator”.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.5 The Projective Plane: P2

POINTS: All ordinary lines in R3 that pass through the origin.

LINES: All ordinary planes in R3 that pass through the origin.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.6 The Affine Plane: A2

POINTS: All ordinary nonhorizontal lines in R3 that pass through the origin.

LINES: All ordinary nonhorizontal planes in R3 that pass through the origin.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.7 The First Vector Plane: V2

POINTS: Ordered triples (x, y, z) of real numbers for which x, y, and z are not all zero.
Also, (x1, y1, z1) and (x2, y2, z2) are regarded as equivalent (the same point) if one triple is a
nonzero multiple of the other.

LINES: Ordered triples (a, b, c) of real numbers for which a, b, and c are not all zero. Also,
(a1, b1, c1) and (a2, b2, c2) are regarded as equivalent (the same line) if one triple is a nonzero
multiple of the other.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.8 The Second Vector Plane: W2

POINTS: Ordered triples (x, y, z) of real numbers for which z is nonzero. Also, (x1, y1, z1)
and (x2, y2, z2) are regarded as equivalent (the same point) if one triple is a nonzero multiple
of the other.

LINES: Ordered triples (a, b, c) of real numbers for which a and b are not both zero. Also,
(a1, b1, c1) and (a2, b2, c2) are regarded as equivalent (the same line) if one triple is a nonzero
multiple of the other.

PLANES: There is only one PLANE; namely, the set of all of the POINTS.
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6.3.9 Analytical Euclidean Space: E3

POINTS: Ordered triples (x, y, z) of real numbers.

LINES: Sets of points of the form. . .

PLANES: Sets of points that satisfy an equation of the form ax + by + cz + d = 0, where
a, b, c and d are real numbers; and further a, b and c are not all zero.

41



6.3.10 Analytical Euclidean 4-Space: E4

POINTS:

LINES:

PLANES:
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6.3.11 Analytical Euclidean n-Space: En

Here n is an integer greater than 3.

POINTS:

LINES:

PLANES:
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7 Coordinates

Exercise 7.0.2 How is the notion of coordinates introduced and developed in the K–16
curriculum?

7.1 The Analytical Euclidean Plane E2

7.1.1 Equations of Lines

Suppose you have two distinct points (x1, y1) and (x2, y2) in E2. You probably already know
several ways of getting an equation for the line containing them. For example, if x1 �= x2,
you can calculate the slope

m =
y2 − y1

x2 − x1

and use the point-slope formula

y − y1 = m(x − x1).

Here is a variation on this formula that might be new to you, and works even if the line
turns out to be vertical:

An equation of the line containing (x1, y1) and (x2, y2) is

(y1 − y2)x + (x2 − x1)y + (x1y2 − x2y1) = 0.

Exercise 7.1.1 Verify that this is the equation of a line. Where do you use the assumption
that the two points are distinct?

Exercise 7.1.2 Verify that each of the two points satisfies the equation.
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Exercise 7.1.3 Derive this formula by trying to solve the following two equations simulta-
neously for a, b and c, assuming that a and b are not both zero:

ax1 + by1 + c = 0
ax2 + by2 + c = 0

Exercise 7.1.4 Explain how you can conclude from the previous problem that Axiom I-1
holds for E2.

Exercise 7.1.5 Suppose A = (1, 2), B = (1, 5), and C = (2,−4). Use the formula to

determine an equation for the lines
←→
AB and

←→
AC.
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7.1.2 Determinants

The following are formulas for determinants of arrays or matrices of numbers. We won’t say
more about determinants right now, but just learn the formulas:

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad − bc.

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = (aei + bfg + cdh) − (afh + bdi + ceg).

Two other equivalent formulas for 3 × 3 matrices are:

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = a

∣∣∣∣∣ e f
h i

∣∣∣∣∣ − b

∣∣∣∣∣ d f
g i

∣∣∣∣∣ + c

∣∣∣∣∣ d e
g h

∣∣∣∣∣ .

∣∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣∣ = a

∣∣∣∣∣ e f
h i

∣∣∣∣∣ − d

∣∣∣∣∣ b c
h i

∣∣∣∣∣ + g

∣∣∣∣∣ b c
e f

∣∣∣∣∣ .
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∣∣∣∣∣∣∣∣∣

a b c d
e f g h
i j k �
m n o p

∣∣∣∣∣∣∣∣∣
= a

∣∣∣∣∣∣∣
f g h
j k �
n o p

∣∣∣∣∣∣∣−b

∣∣∣∣∣∣∣
e g h
i j �
m o p

∣∣∣∣∣∣∣+c

∣∣∣∣∣∣∣
e f h
i j �
m n p

∣∣∣∣∣∣∣−d

∣∣∣∣∣∣∣
e f g
i j k
m n o

∣∣∣∣∣∣∣ .

Another equivalent formula is:

∣∣∣∣∣∣∣∣∣

a b c d
e f g h
i j k �
m n o p

∣∣∣∣∣∣∣∣∣
= a

∣∣∣∣∣∣∣
f g h
j k �
n o p

∣∣∣∣∣∣∣− e

∣∣∣∣∣∣∣
b c d
j k �
n o p

∣∣∣∣∣∣∣+ i

∣∣∣∣∣∣∣
b c d
f g h
n o p

∣∣∣∣∣∣∣−m

∣∣∣∣∣∣∣
b c d
f g h
j k �

∣∣∣∣∣∣∣ .

Exercise 7.1.6 Calculate the following determinants:

1. ∣∣∣∣∣ −1 2
3 −4

∣∣∣∣∣
2. ∣∣∣∣∣∣∣

0 1 2
−1 4 3
−2 0 5

∣∣∣∣∣∣∣
3. ∣∣∣∣∣∣∣∣∣

−1 1 2 −3
0 −2 4 5
3 0 0 −4
2 6 10 −7

∣∣∣∣∣∣∣∣∣
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7.1.3 Equations of Lines via Determinants

Determinants can be used to express concisely the equation of a line determined by two
points:

An equation of the line containing the distinct points (x1, y1) and (x2, y2) is

∣∣∣∣∣∣∣
x x1 x2

y y1 y2

1 1 1

∣∣∣∣∣∣∣ = 0.

Exercise 7.1.7 Show that above statement is correct.

Exercise 7.1.8 Suppose A = (1, 2), B = (1, 5) and C = (2,−4). Use this version of the

formula to determine an equation for the lines
←→
AB and

←→
AC.
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7.1.4 Testing Collinearity

Three points (x1, y1), (x2, y2) and (x3, y3) are collinear if and only if

∣∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣∣ = 0.

Exercise 7.1.9 Prove this statement. Suggestion: You might have to consider the special
case that all three points are identical.

Exercise 7.1.10 Use this formula to show that the points A = (1, 2), B = (1, 5) and
C = (2,−4) are not collinear.

Exercise 7.1.11 Use this formula to show that the points A = (1, 2), B = (23/2, 5) and
C = (2,−4) are collinear.
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7.1.5 Intersections of Lines

From a previous theorem we know that if two different lines intersect, then they intersect in
exactly one point. Given two different lines in E2, how can we compute the coordinates of
that point? One method is to use Cramer’s Rule:

If two different lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 intersect, then
their point of intersection is given by:

x = −

∣∣∣∣∣ c1 b1

c2 b2

∣∣∣∣∣∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣
, y = −

∣∣∣∣∣ a1 c1

a2 c2

∣∣∣∣∣∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣
.

Exercise 7.1.12 Prove the above statement.

Exercise 7.1.13 What happens when you try to apply this formula to two lines that do
not intersect, or to two equations describing the same line?

Exercise 7.1.14 Try to make sense of the following statement:

If two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 intersect, then their
point of intersection is given by:

∣∣∣∣∣∣∣
a b c
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣ = 0.
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7.1.6 Parametric Equations of Lines

Here is another useful description of a line determined by two points.

If (x1, y1) and (x2, y2) are two distinct points, then the line containing them is
the set of points {(x1, y1)+ t(u, v) : t ∈ R}, where u = x2−x1 and v = y2−y1.

Exercise 7.1.15 Prove that this description is correct; i.e., prove that this set is exactly
the same as the set of points on the line containing the original two points, as given by the
earlier formula.

Exercise 7.1.16 What point on the line do you get when t = 0? When t = 1? When
t = 1/2? When t = 2? When t = −1? Try plotting these points and explain their geometric
relationship to the original two points.

Exercise 7.1.17 Suppose A = (1, 2), B = (1, 5) and C = (2,−4). Use this description to

obtain the lines
←→
AB and

←→
AC.
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7.2 Some Trigonometry

(This section was written with Sue Foege.)

7.2.1 Definitions of Sine and Cosine

The circle with center at the origin and radius of one unit is often called the unit circle.
Recall that the equation of the unit circle is given by x2 + y2 = 1.

The trigonometric functions or ratios are often referred to as the circular functions. Let
θ be an angle of rotation about the origin, measured from the positive x-axis, where a
counterclockwise rotation produces a positive angle, as shown in Figure 1. The point P (a, b)
on the unit circle corresponds to θ.

a

b

a

(1,0)

(0,1) P(a,b)

x

y

θ

1b

Figure 1: The Unit Circle — An Angle of Rotation

Definition: The cosine of θ, denoted cos θ, is the first, or x coordinate of the
corresponding point P on the unit circle. In Figure 1, a = cos θ.

Definition: The sine of θ, denoted sin θ, is the second, or y coordinate of the
corresponding point P on the unit circle. In Figure 1, b = sin θ.
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Exercise 7.2.1 Since (cos θ, sin θ) is a point on the unit circle, what equation do these
coordinates satisfy? (Note: this is a trig identity that you are familiar with!)

Exercise 7.2.2 What is the largest value of sin θ? Give three values of θ where this maxi-
mum value is attained.

Exercise 7.2.3 What is the smallest value of sin θ? Give three values of θ where this
minimum is attained.

Exercise 7.2.4 Place your finger on the point (1, 0), and trace the unit circle, counterclock-
wise, stopping at the point (−1, 0). While doing this, how does the second coordinate of the
point on the unit circle change? With the same question in mind, continue tracing around
the circle.

Exercise 7.2.5 How does the first coordinate of the point change on this journey?

Exercise 7.2.6 Since the second coordinate of the point on the unit circle is the sine of the
corresponding angle of rotation, and the first coordinate is the cosine of this angle, we can
use the previous two problems to sketch the graphs of the sine and the cosine as a function
of the angle. Sketch both graphs.

Exercise 7.2.7 Is circular a good description of the sine and cosine functions?
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7.2.2 Angles in Different Quadrants

y

θ=ψθψ

θ

ψ

θ

ψ

II I

III IV

x x

x x

y y

y

The above figure shows four possible positions of the angle θ—one in each of the four quad-
rants. Another angle, Ψ, is also marked. This is sometimes called the reference angle for
θ. In each case, sin θ = ± sin Ψ and cos θ = ± cos Ψ. Also, tan θ = ± tan Ψ, recalling that
tan θ = sin θ/ cos θ. The choice of ± depends upon the quadrant.
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Exercise 7.2.8 Fill in the chart:

1. Quadrant I

(a) sin θ = sin Ψ.

(b) cos θ = cos Ψ.

(c) tan θ = tan Ψ.

2. Quadrant II

(a) sin θ =

(b) cos θ =

(c) tan θ =

3. Quadrant III

(a) sin θ =

(b) cos θ =

(c) tan θ =

4. Quadrant IV

(a) sin θ =

(b) cos θ =

(c) tan θ =

One mnemonic device to remember the signs of the trig functions sine, cosine and tangent
(sine/cosine) in the four quadrants is A Smart Trig Class:

A All three trig functions are positive in Quadrant I.

S Only Sine is positive in Quadrant II; the others are negative.

T Only Tangent is positive in Quadrant III; the others are negative.

C Only Cosine is positive in Quadrant IV; the others are negative.
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7.2.3 Some Familiar Angles

Here is a mnemonic to remember the sine and cosine of some common angles:

θ 0◦ 30◦ 45◦ 60◦ 90◦

sin θ
√

0/2
√

1/2
√

2/2
√

3/2
√

4/2

cos θ
√

4/2
√

3/2
√

2/2
√

1/2
√

0/2

Exercise 7.2.9 Convince yourself that these values are correct by considering 45◦−45◦−90◦

triangles and 30◦ − 60◦ − 90◦ triangles.
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7.2.4 Some Basic Identities

(  ,  )

θ
−θ

(a,b) = (cos θ , sin θ)

90+θ

180−θ

(  ,  )

(  ,  )

(  ,  )

(  ,  )

Figure 2: Unit Circle — a = cos θ , b = sin θ

Exercise 7.2.10 Using the coordinates a and b, fill in the missing coordinates in Figure 2.
Since a = cos θ and b = sin θ, we easily get the sine and cosine of other angles, such as −θ,
90◦ + θ, 180◦ + θ, 90◦ − θ, and 180◦ − θ. For example, sin (−θ) = −b = − sin θ. Using
Figure 2, complete and/or verify the following identities.

1. cos (−θ) = a = cos θ.

2. sin (−θ) =

3. cos (90◦ + θ) =

4. sin (90◦ + θ) = a = cos θ.

5. cos (180◦ + θ) =

6. sin (180◦ + θ) =

7. cos (90◦ − θ) =

8. sin (90◦ − θ) =
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9. cos (180◦ − θ) = −a = − cos θ.

10. sin (180◦ − θ) =
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7.2.5 Polar Coordinates of Points in E2

We assign coordinates to points in E2 so that we can locate them. Let P be a point in E2,
and OP be the line segment between P and the origin. Let r be the distance between P and
the origin. (So r is the length of OP .) Let θ be the angle, measured in the counterclockwise
direction, that OP makes with the x-axis. (See the figure below.)

The point P lies on the circle of radius r, centered at the origin, given by the equation
x2 + y2 = r2.

Exercise 7.2.11 Verify that x = r cos θ and y = r sin θ satisfy this equation.

(r, θ) are called the polar coordinates for the point P .

A(cos     , sin     )

P( rcos , rsinθ θ)

θ

x

y

O

θθ

Exercise 7.2.12 Explain exactly when two sets of polar coordinates (r, θ) and (r′, θ′) de-
scribe precisely the same point.
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7.2.6 Alternate Definitions of Sine and Cosine

If θ is an acute angle, then we can draw a right triangle, as in Figure 3 (A). The side opposite
the angle θ is labeled b, the side adjacent to θ is labeled a and the hypotenuse is labeled
c. In Figure 3 (B), we have placed the vertex A at the origin, and the adjacent side on the
x-axis. The vertex B is at the point (a, b).

C
A

B

C

c

A a

b

B(a,b)

c

x

y

θ θ
a

(A) (B)

b

Figure 3: θ < 90◦

Alternate definitions for sin θ and cos θ are:

sin θ =
opposite side

hypotenuse
=

opp

hyp
=

O

H
=

b

c

cos θ =
adjacent side

hypotenuse
=

adj

hyp
=

O

H
=

a

c

Note that when c = 1, the point B(a, b) lies on the unit circle, and sin θ = b
c

= b
1

= b is
the second coordinate of the point B(a, b), while cos θ = a

c
= a

1
= a is the first coordinate

of this point. Thus these alternate definitions are consistent with the old definitions of sine
and cosine.
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7.2.7 Definitions of Tangent, Secant, and Cosecant

Let θ denote an angle.

Definition: The tangent of θ, denoted tan θ is

tan θ =
sin θ

cos θ
.

Definition: The secant of θ, denoted sec θ is

sec θ =
1

cos θ
.

Definition: The cosecant of θ, denoted csc θ is

csc θ =
1

sin θ
.

Exercise 7.2.13 We left out the cotangent of θ. Give an appropriate definition as above.

Exercise 7.2.14 Describe the domain and the range of each of the six trig functions.
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Exercise 7.2.15 Using the alternate definition of sine and cosine as ratios of sides of right
triangles, give alternate definitions of tangent, secant, cosecant, and cotangent.

Exercise 7.2.16 Oscar Had A Heap Of Apples is a mnemonic to remember that sin = O
H

,
cos = A

H
, and tan = O

A
. Make up your own mnemonic.

Exercise 7.2.17 Starting with the known trigonometric identity sin2 θ + cos2 θ = 1 we can
derive two more identities by dividing both sides of this equation by cos2 θ and by sin2 θ.
Try this to find one identity involving tan2 θ and another involving cot2 θ.
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7.2.8 The Area of a Triangle Using Sines

It’s time to put some algebra and trigonometry to use. In this problem we will use the
triangle in Figure 4. In this triangle all angles have measure less than 90◦, however, the
results hold true for general triangles.

The lengths of BC, AC and AB are a, b and c, respectively. Segment AD has length c′ and
DB length c′′. Segment CD is the altitude of the triangle from C, and has length h.

a

A

C

BD

b
h

c

c’ c’’

Figure 4: Triangle ABC

The usual formula for the area of a triangle is 1
2
(base)(height).

Exercise 7.2.18 Using the given labeling, Area(ABC) =

Exercise 7.2.19 Since triangle ADC is a right triangle, sinA = so h =

Exercise 7.2.20 Thus, Area(ABC) = 1
2
ch =

Exercise 7.2.21 What is a formula for Area(ABC) using sin B? Using sin C?? (Note: you
will have to use the altitude from A or B).
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The conclusion we have made is that the area of a triangle is one-half the product of the
lengths of any two sides and the sine of the included angle.
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7.2.9 The Law of Sines

Using the triangle in Section 7.2.8, the Law of Sines is:

sin A

a
=

sin B

b
=

sin C

c

The result holds for arbitrary triangles, but we shall prove it for the triangle ABC in Sec-
tion 7.2.8.

Exercise 7.2.22 We showed that the area of this triangle was given by three different
formulas. What are they?

Exercise 7.2.23 From these three formulas, prove the Law of Sines.
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7.2.10 The Law of Cosines

Using the triangle in Section 7.2.8, the Law of Cosines is:

a2 = b2 + c2 − 2bc cos A

Exercise 7.2.24 Show that c′ = b cos A.

Exercise 7.2.25 Verify that c′′ = c − c′.

Exercise 7.2.26 Verify that h2 = b2 − (c′)2.

Exercise 7.2.27 Apply the Pythagorean Theorem to triangle CDB, then use the facts
above to make the appropriate substitutions to prove the Law of Cosines.

Exercise 7.2.28 One last question: What happens when you Apply the Law of Cosines in
the case that � A is a right angle?
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7.2.11 Addition Formulas

There are very useful formulas for the sine and the cosine of the sum of two angles α and β:

sin(α + β) = sin α cos β + cos α sin β

cos(α + β) = cos α cos β − sin α sin β

Here we will derive these formulas for the case where A + B < 180◦. In the figures below,
PA is perpendicular to the x-axis, and PB is perpendicular to OB. Thus triangle OBP is
a right triangle in both pictures.

OO

P

P

D B

A C A

D B

C

β
α

α + β

α
β

α + β

α + β  <  π / 2 α + β  >  π / 2(A) (B)

α α

Figure 5: α + β

First we gather some facts from Figure 5:
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1. AP = AD + DP .

2. AD = CB. Thus AD + DP = CB + DP .

3. OA = OC − AC.

4. DB = AC. Thus OC − AC = OC − DB.

5. sin α = DB
PB

(using triangle PDB).

6. cos α = DP
PB

(using triangle PDB).

7. Using triangle OCB, sin α =

8. Using triangle OCB, cos α =

9. sin β = PB
OP

and cos β = (using triangle OBP in (A).

10. Using facts 5,8, and 9,

cos α cos β − sin α sin β = (∗)
Using Figure 5 (A),

cos (α + β) = OA
OP

= using fact 3 above

= using fact 4

= cos α cos β − sin α sin β (see (∗))
which proves the first addition formula!

11. Using facts 6,7, and 9,

sin α cos β + cos α sin β = (∗∗)
Using Figure 5 (A),

sin (α + β) = AP
OP

= using fact 1 above

= , using fact 2

=sin α cos β + cos α sin β (see (∗∗))
which proves the second addition formula!
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7.2.12 Heron’s Formula

In this section, we will put some of our results together to prove yet another formula for the
area of a triangle.

For notation, refer to Figure 4 in Section 7.2.8.

Let s = 1
2
(a + b + c) (s is half the perimeter). Heron’s Formula for the area of triangle ABC

is:

area(ABC) =
√

s(s − a)(s − b)(s − c)

First we gather some facts:

1. area(ABC) = 1
2
bc sin A (See Section 7.2.8).

2. sin2 A + cos2 A = 1, thus sin A =
√

1 − cos2 A.

3. a2 = b2 + c2 − 2bc cos A, thus

cos A =
b2 + c2 − a2

2bc
.

(This is the Law of Cosines, proven in Section 7.2.10.)

4. s − a = 1
2
(−a + b + c), s − b = 1

2
(a − b + c), and s − c = 1

2
(a + b − c).

Thus, area(ABC) = 1
2
bc sin A (fact 1)

= 1
2
bc
√

1 − cos2 A (fact 2)

= 1
2
bc

√
1 −

(
b2+c2−a2

2bc

)2
(fact 3)
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= 1
4

√
4b2c2 − (b2 + c2 − a2)2

= 1
4

√
4b2c2 − (b4 + c4 + a4 + 2b2c2 − 2a2b2 − 2a2c2)

= 1
4

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4 (∗)

Now we work on the right hand side of Heron’s Formula:

√
s(s − a)(s − b)(s − c) =

√
1
2
(a + b + c)1

2
(−a + b + c)1

2
(a − b + c)1

2
(a + b − c)

= 1
4

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c) (∗∗)

To finish the proof, we must show that (∗) = (∗∗).

Exercise 7.2.29 Show that (a + b + c)(−a + b + c)(a − b + c)(a + b − c) = 2a2b2 + 2a2c2 +
2b2c2 − a4 − b4 − c4.
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7.2.13 A Cosine Formula

In this section we remind you of a nice formula to get the cosine of the angle using coordinates
of points.

Assume that you have triangle ABC such that the coordinates of the three (distinct) points
A, B, and C are (0, 0), (x1, y1), and (x2, y2), respectively. The Law of Cosines can be used
to prove that

cos A =
x1x2 + y1y2√

x2
1 + y2

1

√
x2

2 + y2
2

.

Exercise 7.2.30 Use the Law of Cosines to prove this formula. Recall that the length of a

line segment joining points (x1, y1) and (x2, y2) is
√

(x2 − x1)2 + (y2 − y1)2.
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7.2.14 Determinantal Area Formula

Referring to the triangle ABC of the previous section, we can prove another area formula.

area(ABC) =
1

2
|x1y2 − x2y1| =

1

2

∥∥∥∥∥ x1 x2

y1 y2

∥∥∥∥∥

(I am using the notation ‖ · ‖ to denote the absolute value of the determinant.)

Exercise 7.2.31 Use area(ABC) = 1
2
bc sin A, the cosine formula from the previous section,

and sin2 A + cos2 A = 1 to prove this formula.
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7.3 Analytical Euclidean Space E3

Points in E3 are ordered triples (x, y, z) of real numbers (called Cartesian coordinates). Lines
are sets of the form {(x1, y1, z1) + t(u, v, w) : t ∈ R}, where (u, v, w) �= (0, 0, 0). Planes are
sets of the form {(x, y, z) : ax + by + cz + d = 0}, where (a, b, c) �= (0, 0, 0).

Exercise 7.3.1 Cylindrical coordinates.

1. Explain how a point (x, y, z) in E3 can be described by cylindrical coordinates (r, θ, z).

2. Explain exactly when two sets of cylindrical coordinates (r, θ, z) and (r′, θ′, z′) describe
precisely the same point.

Exercise 7.3.2 Spherical coordinates.

1. Explain how a point (x, y, z) in E3 can be described by spherical coordinates (ρ, θ φ).

2. Explain exactly when two sets of spherical coordinates (ρ, θ, φ) and (ρ′, θ′, φ′) describe
precisely the same point.

Exercise 7.3.3 Locations on the earth are specified by degrees latitude and longitude, where
latitude ranges from 0◦ to 90◦ S and from 0◦ to 90◦ N, and longitude ranges from 0◦ to 180◦

E and from 0◦ to 180◦ W. The great semicircle specified by 0◦ longitude is known as the
Prime Meridian.

1. Assuming that the North Pole has Cartesian coordinates (0, 0, 1), the South Pole has
Cartesian coordinates (0, 0,−1), and the Prime Meridian crosses the equator at the
point with Cartesian coordinates (1, 0, 0), explain how to convert from spherical coor-
dinates to latitude and longitude.

2. Explain how to convert from latitude and longitude to spherical coordinates.

Exercise 7.3.4 Determine nice coordinates for the eight vertices (corners) of a cube such
that the origin (0, 0, 0) is at the center of the cube.
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Exercise 7.3.5 Determine nice coordinates for the six vertices of an octahedron: a solid
whose faces consist of eight equilateral triangles, with exactly four triangles meeting at each
vertex. Assume that the origin is at the center of the octahedron.

Exercise 7.3.6 Explain why the following points form the three corners of an equilateral
triangle: (1, 0, 0), (cos 120◦, sin 120◦, 0), (cos 240◦, sin 240◦, 0).

Exercise 7.3.7 Using a construction kit like Polydron, Roger’s Connection, Zometool, or
Googolplex, try to build as many objects as you can with the following properties:

1. Each face (side) is an equilateral triangle.

2. Each equilateral triangle is joined to an equilateral triangle along each of its three faces
(these three adjoining triangle are its neighbors).

3. No two neighbors are coplanar.

4. The plane determined by any of the faces does not intersect the rest of the object
anywhere else (this forces the object to be convex ).

How many such objects can you construct? How does your answer change if you drop some
of these conditions?

Determine exact coordinates (e.g., perhaps involving sin, cos,
√

, etc.—not just numerical

approximations) for the corners of each object.

Exercise 7.3.8 Prove algebraically that each incidence axiom I-1 through I-5 holds in E3.
Watch out for various special cases in the event that you divide by an expression that might
equal 0.

Exercise 7.3.9 Assume that (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are three distinct non-
collinear points. Prove:
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An equation of the plane containing (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) is

∣∣∣∣∣∣∣∣∣

x x1 x2 x3

y y1 y2 y3

z z1 z2 z3

1 1 1 1

∣∣∣∣∣∣∣∣∣
= 0.
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7.4 Other Geometrical Worlds

7.4.1 The Sphere S2

POINTS in S2 are ordered triples (x, y, z) such that x2+y2+z2 = 1. A LINE is a set of points
in S2 that also satisfy an equation of the form ax + by + cz = 0, where (a, b, c) �= (0, 0, 0);
i.e., intersections of S2 with planes in R3 through the origin.

POINTS in S2 can also be described by spherical coordinates (1, θ, φ); i.e., points with
spherical coordinates in which ρ = 1.
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7.4.2 The Punctured Sphere U2

POINTS in U2 are ordered triples (x, y, z) such that x2 + y2 + z2 = 1, except for the triple
N = (0, 0, 1) which is excluded. A LINE is a set of points in U2 that also lie on a plane in
R3 that passes through N and is not tangent to the sphere. What is the general equation
of such a plane?
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7.4.3 The Open Hemisphere H2

POINTS in H2 are ordered triples (x, y, z) such that x2 + y2 + z2 = 1 and z > 1. A LINE
is a set of points in H2 that also lie on a plane in R3 that is perpendicular to the xy-plane
and intersects H2. What is the general equation of such a plane?
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7.4.4 The Projective Plane P2

POINTS in P2 are ordinary lines in R3 that pass through the origin. So each POINT is
a set of the form {t(x, y, z) : t ∈ R}, for some ordered triple (x, y, z) �= (0, 0, 0). LINES
are ordinary planes in R3 that pass through the origin. So each LINE is a set of the form
{(x, y, z) : ax + by + cz = 0}, where (a, b, c) �= (0, 0, 0).
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7.4.5 Analytical Euclidean 4-Space: E4

Points in E4 are ordered quadruples (x1, x2, x3, x4) of real numbers. Lines are sets of the
form {(x1, x2, x3, x4) + t(u1, u2, u3, u4) : t ∈ R}, where (u1, u2, u3, u4) �= (0, 0, 0, 0). Planes
are sets of the form {(x1, x2, x3, x4) + s(u1, u2, u3, u4) + t(v1, v2, v3, v4) : s, t ∈ R}, where
(u1, u2, u3, u4) �= (0, 0, 0, 0), (v1, v2, v3, v4) �= (0, 0, 0, 0), and (u1, u2, u3, u4) and (v1, v2, v3, v4)
are not multiples of each other.
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7.4.6 Analytical Euclidean n-Space: En

Assume n is an integer greater than 2. Points in En are ordered n-tuples x =
(x1, x2, x3, . . . , xn). Lines are sets of the form {x + tu : t ∈ R}, where x is an n-tuple
and u is a nonzero n-tuple. Planes are sets of the form {x + su + tv : s, t ∈ R}, where x is
an n-tuple, u and v are nonzero n-tuples, and u and v are not multiples of each other.

81



8 Distance

Exercise 8.0.1 What is the distance between two points in a field?

Exercise 8.0.2 What is the distance between two locations in town? Does your answer
change if there are any one-way streets? Does your answer change if you are walking, riding
a bicycle, or driving a car?

Exercise 8.0.3 What is the distance between two cities in the state?

Exercise 8.0.4 What is the distance between two cities on the earth?

Exercise 8.0.5 What is the distance traveled by a thrown rock? What is the distance along
a curve in the shape of the St. Louis arch?

Exercise 8.0.6 What is the distance from the earth to the moon?

Exercise 8.0.7 What is the distance between a speaker mounted on a wall of a room and
the stereo system on the opposite wall?

Exercise 8.0.8 What is the distance between two computers on the internet?

Exercise 8.0.9 What does distance have to do with error-correcting codes?

Exercise 8.0.10 Think about common (and uncommon!) notions of distance. What prop-
erties do we expect something called “distance” to satisfy?

Exercise 8.0.11 Given two points, find the set of all points equidistant from both of them.
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Exercise 8.0.12 Given three points, find the set of all points equidistant from all three of
them.

Exercise 8.0.13 Given a finite set of points (“schools”), divide the plane up into regions
(“school districts”) according to which school is closest.

Exercise 8.0.14 Give three points, find a point so that the sum of the distances to the
three points is minimized.

Exercise 8.0.15 Given an angle formed by two rays, find the set of all points equidistant
from both rays.

Exercise 8.0.16 Given a triangle, find the set of all points equidistant from all three sides.

Exercise 8.0.17 Given a point and a line, find the set of all points equidistant from both
of them.

Exercise 8.0.18 Given two points, find the set of all points so that the sum of the distances
to the two given points is a given constant c.

Exercise 8.0.19 Given three points, find the shortest way to “connect them up.” You may
need to insert more points.

Exercise 8.0.20 Given four points, find the shortest way to “connect them up.” Try start-
ing first with the four corners of a square.

Exercise 8.0.21 A camper finds herself in the angle formed by the edge of a meadow and
the bank of a river. Her tent is also in this angle. Describe how to construct the shortest
path from her current location to her tent, given that she wishes to stop by the river on the
way. Now describe how to construct the shortest path from her current location to her tent,
given that she wishes first to stop by the river, and then after that stop by the meadow, on
the way to her tent.
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Exercise 8.0.22 How is the notion of distance introduced and developed in the K–16 cur-
riculum?
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8.1 The Metric Axioms

Here is an outline of some of the main results of Section 2.4 of Kay.

First, we have the Metric Axioms.

Axiom D-1 — Each pair of points A,B is associated with a unique real
number AB, called the distance from A to B.

Axiom D-2 — For all points A and B, AB ≥ 0 unless with equality only if
A = B.

Axiom D-3 — For all points A and B, AB = BA.

Axiom D-4 — Ruler Postulate: The points of each line � may be assigned
to real numbers x, −∞ < x < ∞, called coordinates, in such a manner
that

1. Each point on � is assigned to a unique coordinate.

2. Each coordinate is assigned to a unique point on �.

3. Any two points on � may be assigned to zero and a positive coor-
dinate, respectively.

4. If points A and B on � have coordinates a and b, respectively, then
AB = |a − b|.

Definition: Distance is said to satisfy the Triangle Inequality if AB + BC ≥
AC holds for all triples of points A,B,C.

We won’t have to make this property an axiom since it will eventually be proved.

Exercise 8.1.1 What would be a good definition of one point being between two others?
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Definition of Betweenness: For any three points A, B, and C in space, we
say that B is between A and C, and we write A-B-C, if and only if A, B, and
C are distinct, collinear points, and AC = AB + BC.

Definition: If A, B, C, and D are four distinct collinear points, let the be-
tweenness relations A-B-C-D represent the composite of all four betweenness
relations A-B-C, A-B-D, A-C-D, and B-C-D.

Theorem 8.1.1 If A-B-C, then C-B-A, and neither A-C-B nor B-A-C.
(This is Theorem 1 of Kay.)

Theorem 8.1.2 If A-B-C, A-C-D, and the inequalities AB+BD ≥ AD and
BC + CD ≥ BD hold, then A-B-C-D. (This is Theorem 2 of Kay.)

Exercise 8.1.2 In terms of betweenness, what would be good definitions of a segment, ray
or line determined by two points. How would you define an angle determined by three
points?
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Definition:

Segment AB: If A and B are distinct points, the segment AB is AB =
{A,B} ∪ {C : A-C-B}. Points A and B are called the endpoints of the
segment.

Ray AB: If A and B are distinct points, the ray AB is
−→
AB= {A,B}∪{C : A-

C-B} ∪ {D : A-B-D}. Point A is called the endpoint or origin of the
ray.

Line AB: If A, B, and C are distinct points such that A-B-C, then
←→
AB=

−→
BA

∪ −→
BC. Actually, this must be proven to be equivalent to the original

definition of
←→
AB as the unique line containing both A and B.

Angle ABC: If A, B, and C are noncollinear points, the angle ABC is

� ABC =
−→
BA ∪ −→

BC. Point B is called the vertex of the angle. Note
that our definition of angle explicitly excludes the possibility that A, B,
and C are collinear.

Definition: The extension of segment AB is either the ray
−→
AB (in the di-

rection of B), the ray
−→
BA (in the direction of A), or the line

←→
AB (in both

directions). The extension of ray
−→
AB is just the line

←→
AB.

Theorem 8.1.3 For any line � and any coordinate system under the Ruler
Postulate, if A[a], B[b], and C[c] are three points on line �, with their coordi-
nates, then A-B-C iff either a < b < c or c < b < a. (This is Theorem 3 of
Kay.)
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Theorem 8.1.4 If C ∈ −→
AB and A �= C, then

−→
AB=

−→
AC. (This is Theorem 4

of Kay.)

Theorem 8.1.5 (Segment Construction Theorem) If AB and CD are

two segments and AB < CD, then there exists a unique point E on ray
−→
CD

such that AB = CE and C-E-D. (This is Theorem 5 of Kay.)
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8.2 Distance in E2

8.2.1 The Distance Formula

Definition: The distance AB between the points A = (x1, y1) and (x2, y2) in
E2 is given by

AB =
√

(x2 − x1)2 + (y2 − y1)2

Exercise 8.2.1 Given the points A and B above, consider a third point C = (x2, y1) and
use triangle ABC to prove the distance formula from the Pythagorean theorem.

Exercise 8.2.2 Verify that Axioms D-1, D-2, and D-3 hold.

Exercise 8.2.3 Given A = (x1, y1), B = (x1, y2), recall that we proved that

←→
AB= {A + t(B − A) : t ∈ R}.

Prove the following theorem:

Assume that C ∈←→
AB. Then A-C-B if and only if C = A + t(B − A) where

0 < t < 1.

Exercise 8.2.4 Verify that Axiom D-4 holds.

Exercise 8.2.5 For two ordered pairs A = (x1, y1) and B = (x2, y2), define

A · B = x1x2 + y1y2
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For an ordered pair A = (x1, y1), define

‖A‖ =
√

x2
1 + y2

1 =
√

A · A

Prove the following theorem directly from the definitions:

A · B ≤ ‖A‖‖B‖

Exercise 8.2.6 Prove:

(A + B) · (A + B) = ‖A‖2 + 2A · B + ‖B‖2

Exercise 8.2.7 Observe the obvious fact that

AB = ‖B − A‖ =
√

(B − A) · (B − A)

Prove the Triangle Inequality holds for any three points A,B,C:
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AC ≤ AB + BC

Suggestion: First prove that

‖D + E‖ ≤ ‖D‖ + ‖E‖

Then let D = B − A and E = C − B.

Exercise 8.2.8 Explore the consequences of defining the distance AB between the points
A = (x1, y1) and (x2, y2) in E2 to be

AB = |(x2 − x1)| + |(y2 − y1)|.

Exercise 8.2.9 Explore the consequences of defining the distance AB between the points
A = (x1, y1) and (x2, y2) in E2 to be

AB = max{|(x2 − x1)|, |(y2 − y1)|}.
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8.2.2 What is the Distance to the Horizon?

It was the first time that Poole had seen a genuine horizon since he had come to
Star City, and it was not quite as far away as he had expected. . . . He used to
be good at mental arithmetic—a rare achievement even in his time, and probably
much rarer now. The formula to give the horizon distance was a simple one: the
square root of twice your height times the radius—the sort of thing you never
forgot, even if you wanted to. . .

—Arthur C. Clarke, 3001, Ballantine Books, New York, 1997, page 71

Exercise 8.2.10 In the above passage, Frank Poole uses a formula to determine the distance
to the horizon given his height above the ground.

1. Use algebraic notation to express the formula Poole is using.

2. Beginning the diagram below, derive your own formula. You will need to add some
more elements to the diagram.

3. Compare your formula to Poole’s; you will find that they do not match. How are they
different?

4. When I was a boy it was possible to see the Atlantic Ocean from the peak of Mt. Wash-
ington in New Hampshire. This mountain is 6288 feet high. How far away is the
horizon? Express your answer in miles. Assume that the radius of the Earth is 4000
miles. Use both your formula and Poole’s formula and comment on the results. Why
does Poole’s formula work so well, even though it is not correct?
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8.2.3 The Snowflake Curve

Begin with an equilateral triangle. Let’s assume that each side of the triangle has length
one. Remove the middle third of each line segment and replace it with two sides of an
“outward-pointing” equilateral triangle of side length 1/3. Now you have a six-pointed star
formed from 12 line segments of length 1/3. Replace the middle third of each of these line
segments with two sides of outward equilateral triangle of side length 1/9. Now you have a
star-shaped figure with 48 sides. Continue to repeat this process, and the figure will converge
to the “Snowflake Curve.” Shown below are the first three stages in the construction of the
Snowflake Curve.

Exercise 8.2.11

1. In the limit, what is the length of the Snowflake Curve?

2. In the limit, what is the area enclosed by the Snowflake Curve?
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Figure 6: Constructing the Snowflake Curve
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8.2.4 The Longimeter

How can we measure the lengths of curves in “real life?” There are devices consisting of
wheels with some sort of dial that you can roll over a map to estimate distances, and larger
versions that you can roll in front of you on, e.g., paths, to measure distance (what are these
things called?). You can also estimate the distance that you walk by wearing a pedometer.

Here is another way to estimate the length of a curve on a map, using a simple device called
a longimeter. On a transparent sheet of plastic create a square grid, each square having
side length of, say 1 mm. Superimpose this grid your curve in three different orientations,
differing one from the other by a rotation of 30◦. In each of the three cases, count how
many squares the curve passes through. Let the sum of these three numbers be S. Then an
estimate of the length of the curve is S/3.82 mm.

In the example below, I rotated the figure rather than the grid. Each square has side length
0.25 in. The sum S is 16 + 16 + 15 = 47, so the estimate of the length of the curve is
47/3.82 ≈ 12.30 units of length 0.25 in, or 3.07 in.

Figure 7: Using a Longimeter

Exercise 8.2.12 Research question: Read the reference below and write up an explanation
of why this method works. In particular, where does the number 3.82 come from? (This is
not explicitly explained in the book.)
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Reference: H. Steinhaus, Mathematical Snapshots, Oxford University Press, New York, 1989,
pp. 105–107.
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8.2.5 Fractals

The notion of “length” of certain naturally occurring objects can, however, be tricky, and can
lead one into the notion of fractals. The following quote comes from a book by Mandelbrot:

To introduce a first category of fractals, namely curves whose fractal dimension
is greater than 1, consider a stretch of coastline. It is evident that its length is
at least equal to the distance measured along a straight line between its beginning
and its end. However, the typical coastline is irregular and winding, and there is
no question it is much longer than the straight line between its end points.

There are various ways of evaluating its length more accurately. . .The result is
most peculiar: coastline length turns out to be an elusive notion that slips between
the fingers of one who wants to grasp it. All measurement methods ultimately
lead to the conclusion that the typical coastline’s length is very large and so ill
determined that it is best considered infinite. . . .

Set dividers to a prescribed opening ε, to be called the yardstick length, and walk
these dividers along the coastline, each new step starting where the previous step
leaves off. The number of steps multiplied by ε is an approximate length L(ε). As
the dividers’ opening becomes smaller and smaller, and as we repeat the operation,
we have been taught to expect L(ε) to settle rapidly to a well-defined value called
the true length. But in fact what we expect does not happen. In the typical case,
the observed L(ε) tends to increase without limit.

The reason for this behavior is obvious: When a bay or peninsula noticed on
a map scaled to 1/100, 000 is reexamined on a map at 1/10, 000, subbays and
subpeninsulas become visible. On a 1/1, 000 scale map, sub-subbays and sub-
subpeninsulas appear, and so forth. Each adds to the measured length.

—B.B. Mandelbrot, “How Long is the Coast of Britain,”The Fractal Geometry
of Nature, W.H. Freeman and Company, New York, 1983, Chapter 5, p. 25.
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8.3 Distance in E3

8.3.1 Formulas

You can easily verify that the analogs of the formulas and theorems in E2 hold for E3 as
well:

Definition: The distance AB between the points A = (x1, y1, z1) and
(x2, y2, z2) in E3 is given by

AB =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Assume that C ∈←→
AB. Then A-C-B if and only if C = A + t(B − A) where

0 < t < 1.

A · B = x1x2 + y1y2 + z1z2

‖A‖ =
√

x2
1 + y2

1 + z2
1 =

√
A · A

A · B ≤ ‖A‖‖B‖
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‖D + E‖ ≤ ‖D‖ + ‖E‖

AC ≤ AB + BC

Assume that you have triangle ABC such that the coordinates of the three
(distinct) points A, B, and C are (0, 0, 0), (x1, y1, z1), and (x2, y2, z2), respec-
tively. Then

cos A =
x1x2 + y1y2 + z1z2√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2
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8.3.2 The Platonic Solids

There are exactly five different three-dimensional polyhedra that satisfy the following con-
ditions:

• Each face is a regular polygon.

• All faces are congruent to each other.

• The same number of faces meets at each vertex (corner).

• No two neighboring faces are coplanar.

• For each face, the plane determined by that face does not intersect the rest of the
object anywhere else (the object is convex).

These polyhedra are called the Platonic solids.

Exercise 8.3.1 By considering the angles of regular polygons, confirm that there cannot be
more than five such polyhedra:

• Four triangles, with three meeting at each vertex (tetrahedron).

• Eight triangles, with four meeting at each vertex (octahedron).

• Twenty triangles, with five meeting at each vertex (icosahedron).

• Six squares, with three meeting at each vertex (cube).

• Twelve pentagons, with three meeting at each vertex (dodecahedron).

To prove that all five objects can, in fact, be constructed, we can find coordinates for the
vertices.

For the cube we have seen that we can use the points (±1,±1,±1).

For the octahedron we have seen that we can use the points (±1, 0, 0), (0,±1, 0), (0, 0,±1).
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Exercise 8.3.2 Find coordinates for a regular tetrahedron.

Exercise 8.3.3 Determine coordinates for the icosahedron as follows. Begin with an octa-
hedron with coordinates as above. Divide each of the 12 edges in the same ratio by 12 new
points, as shown in the following figure.

Prove that if the ratio is properly chosen, these points will be the vertices of an icosahedron.
Suggestion: Given the two end points of an edge of the octahedron, write the parametric
formula for the line passing through them. Then the goal is to find the correct value of “t”
(necessarily between 0 and 1) to locate the appropriate point on the edge. Also, a physical
model of the octahedron can help you visualize the construction.

Exercise 8.3.4 Place a point at the center of each of the 20 triangles of the icosahedron.
Verify that these 20 points will be the vertices of a dodecahedron.
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8.3.3 The Global Positioning System (GPS)

Orbiting the earth is a collection of 24 satellites broadcasting signals that can be picked up
and analyzed by portable receivers. You can buy such a receiver from stores like Radio Shack
for a few hundred dollars. Using the signals this receiver is able to determine its distance
from several of the satellites. Then, since the position in space of each of these satellites
is also known, the receiver is able to compute its location in three-dimensional space (e.g.,
latitude, longitude, altitude).

Exercise 8.3.5 For any given position determination you do not need to know the distance
to all 24 of the satellites. How many distances do you need at any one time? How can you
use these distances to calculate your position? Specifically, assume that your (unknown)
position is (x0, y0, z0) and that you know the distance di to satellite i at known location
(xi, yi, zi) for i = 1, . . . , n. What value of n is necessary to determine your position, and
what specific calculations must you perform? Suggestion: Try solving this problem first in
E1, then in E2.

Reference: Thomas A. Herring, “The Global Positioning System,” Scientific American,
February 1996, pp. 44–50. See also various websites.
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8.3.4 Earthquake Location

Exercise 8.3.6 Suppose an earthquake occurs somewhere at unknown location (x0, y0, z0)
and unknown time t0. You have several earthquake detectors; detector i is at location
(xi, yi, zi) and the tremor arrives at that position at time ti. Let’s make the simplifying
assumption that the speed of the tremor v as it travels outward from the earthquake is
constant. How can you calculate the location and time of the earthquake from the readings
of a set of detectors? Do you need to know the speed v in advance or can you solve for it?
What is the minimum number of detectors needed to make the calculations? Do you need
to make any special assumptions about the detectors (e.g., do they need to be noncollinear
or noncoplanar)? Suggestion: Try solving this problem first in E1, then in E2.
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8.4 Distance in S2

A good book about “living” in a spherical world is Sphereland by Burger.

8.4.1 Distance Around a Circle

Suppose you have a circle of radius 1. Its circumference is C = 2πr = 2π, which is a bit
bigger than 6.2.

Exercise 8.4.1 Explain why the formula for the circumference of a circle provides the def-
inition of π.

The measure of a central angle that cuts off a piece of the circumference of length 1 is called
a radian. Therefore, there are 2π radians around the center of a circle and we can convert
back and forth between degrees and radians by

θ(in radians) =
π

180◦
θ(in degrees)

θ(in degrees) =
180◦

π
θ(in radians)

Using radians makes many formulas look “nicer.” For example,

Suppose C is a circle of radius r. The length � of an arc intercepted by a
central angle θ is given by

� = rθ (if θ is measured in radians)

� =
π

180◦
rθ (if θ is measured in degrees)
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Another motivation for expressing angles is radians are the Taylor series formulas for sine
and cosine:

For angle x measured in radians:

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

Exercise 8.4.2 Derive these Taylor series.

Exercise 8.4.3 Sum the squares of the above series to verify that sin2 x + cos2 x = 1.

This might remind you of the Taylor series for ex:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ · · ·

Exercise 8.4.4 Derive this Taylor series.

Exercise 8.4.5 Use the above series to show that eaeb = ea+b.

From substitution (and some observations about convergence), one gets the beautiful formula
for all complex numbers x:
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eix = cos x + i sin x

In particular, setting x = π yields an expression containing the perhaps five most important
constants in mathematics:

eiπ + 1 = 0

These formulas provide a connection between two representations for complex numbers on
the one hand, and Cartesian and polar coordinates on the other.

Any complex number z = a + bi can be represented by a point (a, b) in the Cartesian plane.
But by the above formula, you can set r =

√
a2 + b2 and find θ such that cos θ = a/r and

sin θ = b/r. That is, (r, θ) are polar coordinates for the point (a, b). Then z = r(cos θ +
i sin θ) = reiθ.

Exercise 8.4.6 Suppose z1 = a1 + ib1 and z2 = a2 + ib2, corresponding to the points
P1 = (a1, b1) and P2 = (a2, b2), respectively, in the Cartesian plane. Explain how to find
z = z1 + z2 geometrically.

Exercise 8.4.7 Suppose z1 = r1e
iθ1 and z2 = r2e

iθ2 , corresponding to the points P1, P2 in
the Cartesian plane with polar coordinates (r1, θ1), (r2, θ2), respectively. Explain how to find
z = z1z2 geometrically.

Exercise 8.4.8 From what you learned in the previous exercise,

1. Show geometrically that i2 = −1.
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2. Find three complex numbers such that z3 = 1.

3. Find three complex numbers such that z3 = i.

4. Explain how to find all solutions to any equation of the form zn = z0 where n is a
positive integer and z0 is a particular complex number.

Exercise 8.4.9 Suppose z = z1z2 where z1 = eiθ1 and z2 = eiθ2 . Use this to prove the angle
sum formulas for sine and cosine.
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8.4.2 Distance Axioms in S2

Recall that S2 is a sphere of radius 1 centered at the origin. Let A and B be any two points
on S2. Find a great circle containing both A and B (remember that great circles are “lines”
in S2). This circle is divided into two arcs by the points A and B. Define the distance
between A and B to be the length of the shorter of these arcs. Note that if A and B are not
exactly opposite one another (antipodal), then there is a unique great circle containing both
of them, so the distance between them is well-defined. If, on the other hand, A and B are
antipodal, then there is an infinite number of great circles containing them, but the lengths
of all the great-circular arcs joining A and B are the same. So even in this case the distance
AB is well-defined.

Exercise 8.4.10 Which of the metric axioms hold?

Exercise 8.4.11 Suppose A = (x1, y1, z1) and B = (x2, y2, z2) are two points on S2. Deter-
mine an explicit formula for the distance AB.

Exercise 8.4.12 Look up the latitude and longitude of Lexington, KY and Tokyo, Japan.
Look up the diameter, radius, or circumference of the earth. Use this information to deter-
mine the distance between these two cities.

Exercise 8.4.13 Does the triangle inequality hold?

Exercise 8.4.14 What is the formula for the circumference of a circle in S2 in terms of its
“radius”?
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8.4.3 What is the Size of the Earth?

The kilometer was first defined as 1
10,000

of the distance from the North Pole to the equator

of the Earth. (Can you find a reference that verifies this statement?)

Exercise 8.4.15 What is the circumference of the Earth in kilometers? In miles? Use the
conversion 1 mile equals 1.6 kilometers.

Exercise 8.4.16 What is the radius of the Earth in kilometers? In miles?

Exercise 8.4.17 Research question: What is the current official definition of a kilometer
and a mile?
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8.4.4 Eratosthenes’ Estimate of the Size of the Earth

Eratosthenes in about 200 B.C. observed that on a certain day the sun was directly overhead
in the city of Syene, but rays from the sun struck the ground at an angle of 7.2◦ from the
vertical in the city of Alexandria, which lay 5000 stadia due north of Syene. Assuming that
the Earth was spherical, he used this to estimate its size.

C

7.2

S

A

Exercise 8.4.18 Use this information to determine the radius and circumference of the
Earth, in stadia.

Exercise 8.4.19 While we do not know the length of a stadium precisely, one estimate is
that 1 stadium equals 157.5 meters. Use this to estimate the radius and circumference of
the Earth, in kilometers. How do these figures compare with current estimates?
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8.5 Distance in U2

8.5.1 The Distance Axioms

Recall that POINTS in U2 are points on the unit sphere centered at the origin, except for
the point N = (0, 0, 1). For two points A = (x1, y1, z1) and B = (x2, y2, z2) in U2, define the
distance AB to be

AB =

√
(

x2

1 − z2

− x1

1 − z1

)2 + (
y2

1 − z2

− y1

1 − z1

)2

Note that, peculiar that this definition may appear to be, it is well-defined because neither
z1 or z2 equals 1.

Exercise 8.5.1 Verify that the Metric Axioms hold.
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8.5.2 Stereographic Projection

The easiest way to explain what is going on in U2 is to define a mapping from U2 to the
analytic Cartesian plane E2 in the following way. Let P be the plane given by the equation
z = 0; i.e., the plane containing the “equator” of the unit sphere. For each point A = (x, y, z)

in U2, consider the ordinary ray
−→
NA in E3. Let (p, q, 0) be the point where this ray intersects

P .

(x,y,z)

N

A

P
(p,q,0)

Then you can prove that

p =
x

1 − z

q =
y

1 − z

Exercise 8.5.2 Prove the above formulas.

We use these formulas to define the map φ : (x, y, z) → (p, q) from U2 to E2. This map is
called stereographic projection.
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The inverse φ−1 : (p, q) → (x, y, z) is given by

x =
2p

p2 + q2 + 1

y =
2q

p2 + q2 + 1

z =
p2 + q2 − 1

p2 + q2 + 1

Exercise 8.5.3 Prove that (x, y, z) given by the above formulas is a point on the unit sphere
centered at the origin.

Exercise 8.5.4 Prove that φ−1 is the inverse of φ by showing that φ ◦ φ−1 and φ−1 ◦ φ are
each the identify map.

Now we know that φ maps U2 bijectively onto E2. What do LINES in U2 map to? A LINE
in U2 is a circle on the unit sphere passing through N (with the point N itself deleted). It

is the intersection of the unit sphere with a plane Q through N . Each of the rays
−→
NA for

points A on the circle lie in this plane, so the intersections of these rays with the plane P
equal the intersection P ∪ Q, which is an ordinary line. So LINES in U2 map to ordinary
lines in E2.

Conversely, suppose you are given an ordinary line � in E2. Regard this line as sitting in P .
There is a unique plane containing this line and passing through N . This plane intersects
the unit sphere in a circle passing through N . Deleting N from this circle gives φ−1(�).

Looking at the formula for φ, the distance between two points A,B in U2 is the same as the
ordinary distance between the points φ(A), φ(B) in E2. So all the distance axioms in U2

hold because they hold in E2. For the same reason, the triangle inequality also holds.
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Exercise 8.5.5 We know that φ maps circles on the unit sphere through N (but not in-
cluding N) to ordinary lines in E2, and conversely that φ−1 maps ordinary lines in E2 to
circles on the unit sphere through N (but not including N). Let C be a circle on the unit
sphere that does not pass through N . Describe φ(C).

Exercise 8.5.6 Study the construction of an astrolabe, as described, for example, in the
Cambridge Illustrated History of Astronomy by Michael Hoskin.
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8.6 Distance in H2

Recall that POINTS in H2 are points (x, y, z) on the unit sphere centered at the origin such
that z > 1; i.e, points in the upper hemisphere, excluding the equator. LINES in H2 are
open half-circles perpendicular to the equator. For two points A,B, consider the unique
semicircle that contains both of them, and let P and Q be the endpoints of the semicircle
on the equator as shown below:

QP

A

B

Define the distance AB to be

AB = ln(
AQ

AP

BP

BQ
)

where AP , AQ, BP , and BQ are the ordinary lengths of line segments.

Exercise 8.6.1 Verify that Axioms D-1 – D-3 hold for this model.

Exercise 8.6.2 For two points A,C, consider the unique perpendicular semicircle that con-
tains both of them, and let B be a point on the arc of the semicircle between A and C.
Prove that A-B-C.

Exercise 8.6.3 Prove that if A remains fixed and B moves toward Q, then AB tends to
infinity.
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Exercise 8.6.4 Prove that Axiom D-4 holds for this model.

Exercise 8.6.5 Suppose A = (x1, y1, z1) and B = (x2, y2, z2) in the figure above.

1. Determine the equation of the plane containing both of them that is perpendicular to
the equator.

2. Determine the coordinates of the points P and Q.

3. Write a formula for AB in terms of the coordinates of A and B.

Exercise 8.6.6 Does the triangle inequality hold for this model?

Exercise 8.6.7 Suppose the model H2 is constructed on the lower hemisphere of the sphere,
instead of the upper. What does the model look like under the action of stereographic
projection?
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8.7 Space-Time Distance

Consider a space-time model in which points are given by four coordinates (x, y, z, t), where
(x, y, z) is the location of an event and t is the time of the event. For two points (events)
A = (x1, y1, z1, t1) and B = (x2, y2, z2, t2), define the distance between them to be

AB =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − c2(t2 − t1)2

where c is the speed of light.

Define the line
←→
AB to be the set of all points C such that CA+AB = CB or AC+CB = AB

or AB + BC = AC.

Exercise 8.7.1 Explore which incidence and distance axioms hold.
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9 Angles

Exercise 9.0.2 We have already discussed angles in E2 and E3 a fair amount. What would
be reasonable definitions of measures of angles in S2, U2, P2 and H2? What would be a
reasonable definition of the measure of a “solid angle” in E3?

9.1 The Angle Axioms

This is a summary of Section 2.5 of Kay.

Axiom A-1: Existence of Angle Measure — Each angle � ABC is asso-
ciated with a unique real number between 0 and 180, called its measure
and denoted m � ABC. No angle can have measure 0 or 180.

Axiom A-2: Angle Addition Postulate — If D lies in the interior of
� ABC, then m � ABD +m � DBC = m � ABC. Conversely, if m � ABD +

m � DBC = m � ABC, then ray
−→
BD passes through an interior point of

� ABC.

Axiom D-3: Protractor Postulate — The set of rays
−→
AX lying on one

side of a given line
←→
AB, including ray

−→
AB, may be assigned to the entire

set of real numbers x, 0 ≤ x < 180, called coordinates, in such a manner
that

1. Each ray is assigned to a unique coordinate.

2. No two rays are assigned to the same coordinate.

3. The coordinate of
−→
AB is 0.

4. If rays
−→
AC and

−→
AD have coordinates c and d, then m � CAD =

|c − d|.
Axiom D-4 — Linear Pair Axiom: A linear pair of angles is a supplemen-

tary pair.
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To define the terms used in the Axioms:

Definition: A point D is an interior point of � ABC iff there exists a segment
EF containing D as an interior point that extends from one side of the angle

to the other (E ∈ −→
BA and F ∈ −→

BC, E �= B, F �= B).

Definition: For any three rays
−→
BA,

−→
BD, and

−→
BC (having the same endpoint),

we say that ray
−→
BD lies between rays

−→
BA and

−→
BC, and we write

−→
BA-

−→
BD-

−→
BC,

iff the rays are distinct and m � ABD + m � DBC = m � ABC.

Definition: Two angles are said to form a linear pair iff they have one side
in common and the other two sides are opposite rays. We call any two angles
whose angle measures sum to 180 a supplementary pair, or simply, supple-
mentary, and two angles whose angle measures sum to 90, complementary.

Definition: A right angle is any angle having measure 90. Two (distinct) lines
� and m are said to be perpendicular, and we write � ⊥ m, iff they contain
the sides of a right angle. (For convenience, segments are perpendicular iff
they lie, respectively, on perpendicular lines. Similar terminology applies to
a segment and ray, two rays, and so on.) An acute angle is any angle whose
measure is less than 90. An obtuse angle is any angle whose measure is greater
than 90.

Definition: Two angles having the sides of one opposite the sides of the other
are called vertical angles.
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Theorem 9.1.1 (Angle Construction Theorem) For any two angles

� ABC and � DEF such that m � ABC < m� DEF , there is a unique ray
−→
EG

such that m � ABC = m � GEF and
−→
EF -

−→
EG-

−→
ED. (This is Theorem 1 of Kay.)

Theorem 9.1.2 Two angles that are supplementary, or complementary, to
the same angle have equal measures. (This is Theorem 2 of Kay.)

Lemma 9.1.1 If two lines are perpendicular, they form four right angles at
their point of intersection.

Theorem 9.1.3 If line
←→
BD meets segment AC at an interior point B on that

segment, then
←→
BD⊥ AC iff the adjacent angles at B have equal measures.

(This is Theorem 3 of Kay.)

Theorem 9.1.4 Given a point A on line �, there exists a unique line m per-
pendicular to � at A. (This is Theorem 4 of Kay.)

Theorem 9.1.5 Vertical angles have equal measures. (This is Theorem 5 of
Kay.)
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Exercise 9.1.1 How is the notion of angle introduced and developed in the K–16 curricu-
lum?
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10 The Plane Separation Axiom

This is a summary of Section 2.6 of Kay.

Definition: A set K is called convex provided it has the property that for all
points A ∈ K and B ∈ K, the segment joining A and B lies in K (AB ⊆ K).

Axiom H-1 — Plane Separation Postulate: Let � be any line lying in
any plane P . The set of all points in P not on � consists of the union of two
subsets H1 and H2 of P such that

1. H1 and H2 are convex sets.

2. H1 and H2 are no points in common.

3. If A lies in H1 and B lies in H2, the line � intersects the segment AB.

Definition: The two sets H1 and H2 above are called the two sides of �, or
also, half-planes determined by �.

Theorem 10.0.6 If point A lies on line � and point B lies in one of the half-

planes determined by � then, except for A, the entire segment AB or ray
−→
AB

lies in that half-plane. (This is Theorem 1 of Kay.)
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Corollary 10.0.1 Let B and F lie on opposite sides of a line � and let A and

G be any two distinct points on �. Then segments GB and ray
−→
AF have no

points in common.

Theorem 10.0.7 (Postulate of Pasch) Suppose A, B, and C are any three
distinct noncollinear points in a plane, and � is any line in that plane that
passes through an interior point D of one of the sides, AB, of the triangle
determined by A, B, and C. Assume that � does not contain C. Then line �
meets either AC at some interior point E, or BC at some interior point F ,
the cases being mutually exclusive. (This is Theorem 2 of Kay.)

Exercise 10.0.2 How is the notion of convexity introduced and developed in the K–16
curriculum?
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11 Area and Volume

11.1 Area in E2

Exercise 11.1.1 How would you determine the area of some region (e.g., a lake, county,
etc.) on a map?

Exercise 11.1.2 How would you determine the area of Africa?

Exercise 11.1.3 What is the area of a square? Why? What about squares with nonintegral,
rational, or irrational sides?

Exercise 11.1.4 What is the area of a rectangle?

Exercise 11.1.5 What is the area of a parallelogram?

Exercise 11.1.6 What is the area of a triangle?

Exercise 11.1.7 What is the area of a trapezoid?

Exercise 11.1.8 What is the area of a regular polygon?

Exercise 11.1.9 Can you dissect an equilateral triangle to a square? How about a regular
hexagon? Other polygonal shapes?

Exercise 11.1.10 Show that any polygonal region is equidissectable to a square.

Exercise 11.1.11 Prove that two polygonal regions are equidissectable iff they have the
same area.
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Exercise 11.1.12 Analyze some equidissectability paradoxes.

Exercise 11.1.13 Examine some algebraic theorems that can be proved by equidissectabil-
ity.

Exercise 11.1.14 Find a way to dissect a circle into a finite number of congruent pieces,
not all of them touching the center of the circle.

Exercise 11.1.15 What assumptions have we been making about the nature of area?

Exercise 11.1.16 Suppose you have two overlapping regions A and B. The area of A ∪ B
is not the sum of the areas of A and B. What is it? Extend to more than two regions.

Exercise 11.1.17 If area is preserved under congruence, then the conditions that force a
pair of triangles to be congruent ought to determine the area. How?

Exercise 11.1.18 How can we find the area of a polygonal region if we know the coordinates
of the vertices?

Exercise 11.1.19 What is the area of the region surrounded by the snowflake curve?

Exercise 11.1.20 What is the area of a polygonal region, all of whose coordinates are
integral?

Exercise 11.1.21 What is the area of a circle of radius r? Why?

Exercise 11.1.22 What do we mean by the area of an irregular figure?

Exercise 11.1.23 Are there sets of points for which area is undefined (as opposed to being
zero or infinity)?

125



Exercise 11.1.24 Study and apply Cavalieri’s principle to find the area of certain figures.
Find the area bounded by the curves y = (x + 2)2, y = x2 + 2, x = 1, and x = 4. Do this by
Cavalieri without calculus. Then discuss using calculus for areas under curves. Also double
integrals for more general areas.

Exercise 11.1.25 Express area integrals in terms of polar coordinates. Why does this make
sense?

Exercise 11.1.26 How can we measure area “practically” from a map?

Exercise 11.1.27 Can unbounded regions have finite area?

Exercise 11.1.28 Does the set of rational points in a unit square have area?
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11.2 Area in S2

Exercise 11.2.1 What is the formula for the area of a circular region on a sphere?

Exercise 11.2.2 What is the area of a lune (two-sided polygon formed by two half-great
circles joining two antipodal points) on a sphere?

Exercise 11.2.3 What is the formula for the area of a “triangle” on a sphere?

Exercise 11.2.4 What is the area of a spherical polygonal region?

Exercise 11.2.5 Can the sphere be mapped to the plane in an area-preserving way? In
what ways would such a map of the earth be useful or not useful?
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11.3 Volume in E3

Exercise 11.3.1 What are analogs of all of the above results to volume?

Exercise 11.3.2 What is the effect of scaling upon area, volume, and surface area?

Exercise 11.3.3 What is the volume of a prism?

Exercise 11.3.4 Derive the formula for the volume of a polygonal pyramid by decomposing
a triangular prism into three triangular pyramids.

Exercise 11.3.5 Are two polyhedra equidissectable iff they have the same volume?

Exercise 11.3.6 Derive the formulas for the volume and the circumference of a sphere.

Exercise 11.3.7 Find the volume formed by the intersection of two cylinders of unit radius
and infinite length whose axes cross at right angles.

Exercise 11.3.8 How are the various ideas associated with area and volume introduced and
developed in the K–16 curriculum?
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12 Polyhedra

Exercise 12.0.9 How are polyhedra and other three-dimensional objects introduced and
developed in the K–16 curriculum?

12.1 Initial Questions

Exercise 12.1.1 What is a polyhedron? What is a convex polyhedron? What kinds of
regions can be enclosed by a polyhedral surface?

Exercise 12.1.2 What are three-dimensional analogs of circles, triangles, isosceles triangles,
equilateral triangles, scalene triangles, quadrilaterals, trapezoids, parallelograms, rectangles,
rhombi, squares?

Exercise 12.1.3 Try to find (construct) convex polyhedra such that every face is an equi-
lateral triangle and adjacent triangles do not lie in the same plane.

Exercise 12.1.4 What kinds of polygons can you get as cross-sections when you intersect
a cube with a plane? Repeat with a tetrahedron and with an octahedron.

Exercise 12.1.5 Construct some tensegrity structures based upon polyhedra.
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12.2 Regularity

Exercise 12.2.1 What are three-dimensional analogs of regular polygons?

Exercise 12.2.2 Four squares can be fit together perfectly in the plane surrounding a com-
mon corner (since each interior angle of a square is 90 degrees). Let’s call this a (4,4,4,4)
cluster.

(4,4,4,4) Cluster

Similarly, two squares and three equilateral triangles can fit together perfectly surrounding
a common corner. There are essentially two different ways to do this: (4,4,3,3,3) (where the
squares are adjacent) and (4,3,4,3,3) (where the squares are not adjacent).
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(4,4,3,3,3) Cluster

(4,3,4,3,3) Cluster
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Note that we could have called this last cluster (3, 3, 4, 3, 4) as well—it still refers to the same
cluster. However, (4, 4, 3, 3, 3) and (4, 3, 4, 3, 3) are not the same.

1. You have just seen three clusters. Try to determine all possible clusters that can be
formed by placing combinations of regular polygons in the plane surrounding a common
corner. Be systematic in some fashion, so that you can be certain you have found all
of them.

2. Some of the clusters can be extended to cover (tile) the plane so that at every corner
point of the tiling, exactly the same cluster appears—the same sequence of polygons,
in either clockwise or counterclockwise order. For example, if you tile the plane with
squares, you have a (4, 4, 4, 4) cluster at every single corner. Of the clusters you have
found, determine which ones can be extended. Make a good drawing of each one you
have found.

Exercise 12.2.3 Now we will consider clusters of regular polygons that fit together around
a common corner, but with a total angle of less than 360 degrees. Let’s call these space
clusters. For example, the cluster of three squares is (4, 4, 4), and makes a total angle of only
270 degrees. Of course, this cluster can be extended so that the same cluster appears at each
corner, eventually closing up to make a cube. Just as in the planar case that we looked at
earlier, some space clusters cannot extend to create a polyhedron.

The space cluster (4, 4, 4) consists of only one type of polygon (as opposed to, say, (3, 4, 3, 4)
which consists of more than one type of polygon). List all space clusters that consist of only
one type of polygon. How do you know that you have them all? Determine which of these
appear to extend to enclose a polyhedron.

Exercise 12.2.4 Find coordinates of the vertices and equations of the planes of the faces
for the various polyhedra constructed.

Exercise 12.2.5 Describe the symmetries of the various polyhedra constructed.

Exercise 12.2.6 Find tilings of space by combinations of one or more polyhedra.
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12.3 Euler’s Relation

12.3.1 Initial Investigations

Exercise 12.3.1 Can you construct a polyhedron with (not necessarily equilateral) triangles
with 9 faces?

Exercise 12.3.2 A tetrahedron has 6 edges. Try to construct a polyhedron with exactly 7
edges.

Exercise 12.3.3 Try to construct a polyhedron for which every face has at least 6 edges.

Exercise 12.3.4 (Euler’s Relation) What relationship exists between V (the number of
vertices), E (the number of edges), and F (the number of faces) for convex polyhedra?

Exercise 12.3.5 Prove that even if the faces are allowed to be nonregular, there are no
more than five polyhedra satisfying the two properties that all faces the same number of
sides and the same number of faces meet at each vertex.
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12.3.2 Some Basic Inequalities

Exercise 12.3.6 Let Fi denote the number of faces that have i vertices (and hence i edges).
Explain why

3F3 + 4F4 + 5F5 + 6F6 + · · · = 2E. (1)

Exercise 12.3.7 Explain why

3F3 + 4F4 + 5F5 + 6F6 + · · · ≥ 3F3 + 3F4 + 3F5 + 3F6 + · · · = 3F. (2)

Exercise 12.3.8 Conclude
2E ≥ 3F. (3)

Exercise 12.3.9 Let Vi denote the number of vertices at which i faces (and hence i edges)
meet. Prove

3V3 + 4V4 + 5V5 + 6V6 + · · · = 2E. (4)

Exercise 12.3.10 Prove
2E ≥ 3V. (5)

Exercise 12.3.11 Use Euler’s Relation and (3) to prove

F ≤ 2V − 4. (6)

Exercise 12.3.12 Use Euler’s Relation and (5) to prove

F ≥ 1

2
V + 2. (7)
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12.4 Enumerating Possibilities

Exercise 12.4.1 Label the horizontal axis in a coordinate system V and the vertical axis
F . Graph the region for which the above two inequalities (6) and (7) hold. Begin listing the
whole number solutions in the table below

V F
4 4
5 5
5 6

Exercise 12.4.2 Can you find a formula for the number of different possible values of F
for a given value of V ?

Exercise 12.4.3 Prove that no polyhedron has exactly 7 edges.

Exercise 12.4.4 Think of ways to construct polyhedra that match all possible values of V
and F in the above table. For example, a tetrahedron has (V, F ) = (4, 4) and a pyramid
with a pentagonal base has (V, F ) = (6, 6). If you chop off one corner of a tetrahedron, the
resulting polyhedron has (V, F ) = (6, 5). If you build a shallow pyramid over one of the
triangles of a tetrahedron, the resulting polyhedron has (V, F ) = (5, 6).
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12.4.1 Some More Inequalities

Exercise 12.4.5 Use Euler’s Relation and (3) to prove that

6 ≤ 3V − E. (8)

Exercise 12.4.6 Use Euler’s Relation and (5) to prove that

6 ≤ 3F − E. (9)

Exercise 12.4.7 Use (9) and one of the earlier formulas to prove that

12 ≤ 3F3 + 2F4 + 1F5 + 0F6 − 1F7 − 2F8 − · · · . (10)

Exercise 12.4.8 Prove that every polyhedron must have at least one face that is a triangle,
quadrilateral, or pentagon.

Exercise 12.4.9 Prove that every polyhedron must have at least one vertex at which exactly
3, 4, or 5 edges meet.

Exercise 12.4.10 A truncated icosahedron (soccer ball) is an example of a polyhedron
such that (1) each face is a pentagon or a hexagons, and (2) exactly three faces meet at
each vertex. Prove that any polyhedron with these two properties must have exactly 12
pentagons. Can you think of a polyhedron that has 12 pentagons but a different number of
hexagons than a truncated icosahedron (which has 20 hexagons)?

Exercise 12.4.11 Find formulas for V , E, and F for the semiregular polyhedra in terms of
the number of polygons of each type in the vertex cluster.
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12.4.2 Angle Deficit

You may remember from plane geometry that for any polygon, the sum of the exterior angles
(the amount by which the interior angle falls short of 180 degrees) always equals 360 degrees.
Is there an analog for polyhedra? What “deficit” should we measure?

For each vertex we will calculate by how much the sum of the interior angles of the polygons
meeting there falls short of 360 degrees. Then we will sum these shortfalls over all the
vertices.

Exercise 12.4.12 Remember that the sum of the interior angles of a polygon with n sides
is (n − 2)180 degrees. Prove that

S = 180(F3 + 2F4 + 3F5 + 4F6 + · · ·). (11)

where S is the sum of all of the interior angles of all of the faces.

Exercise 12.4.13 Now use Euler’s Relation and (1) to show that

360V − S = 720 (12)

for all polyhedra.
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13 Congruence

13.1 Introduction

Exercise 13.1.1 How are congruence and symmetry introduced and developed in the K–16
curriculum?

Exercise 13.1.2 What do we mean by two figures being congruent if they are not triangles?

An isometry between two figures is a one-to-one onto distance-preserving mapping f from
one figure to the other. Distance-preserving means that for every two points A and B in the
first figure, the distance from A to B equals the distance from f(A) to f(B).

Exercise 13.1.3 Show that every isometry of the entire plane to itself is uniquely deter-
mined by its action on any three noncollinear points.

Exercise 13.1.4 Show that every isometry of two figures in the plane extends to an isometry
of the entire plane to itself. When is this extension unique?

Exercise 13.1.5 Show that the composition of every pair of isometries is again an isometry.

Exercise 13.1.6 What is the identity isometry under composition?

Exercise 13.1.7 Show that every isometry has an inverse isometry under composition.

Exercise 13.1.8 What do we mean by a figure (set of points) being symmetric?

If there is a nontrivial isometry (not the identity mapping) that maps the figure to itself; i.e.,
it is self-congruent in a non-trivial way.

A symmetry of a figure is an isometry that maps the figure to itself.
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Exercise 13.1.9 Show that the composition of every pair of symmetries is again a symme-
try.
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13.2 Isometries in a Line

Exercise 13.2.1 Classify the isometries of a line (not regarded as sitting in a plane).

Exercise 13.2.2 Find a formula for translation by an amount a. Find a formula for reflect-
ing across a point with coordinate a.

Exercise 13.2.3 If you know the action of an isometry on two distinct points, how can you
determine the isometry algebraically? Geometrically?

Exercise 13.2.4 What is the outcome of composing any two of these isometries?

Exercise 13.2.5 Show than an isometry is a translation iff it is the composition of two
reflections. Conclude that every isometry is the composition of at most two reflections.

Exercise 13.2.6 When do two isometries commute?

Exercise 13.2.7 What is the identity isometry? What is the inverse of each isometry?

Exercise 13.2.8 A figure is a subset of the line. Find a figure with a finite set of symmetries.
Make a “multiplication” table for its symmetries.

Exercise 13.2.9 Find a figure with a countable set of symmetries.

Exercise 13.2.10 Find a figure with an uncountable set of symmetries.

Exercise 13.2.11 Describe the group of symmetries of a line segment.

Exercise 13.2.12 A repeating line pattern is a set of points on the line such that the set of
translational symmetries is generated by a single translational symmetry (and its inverse).
There may or may not be reflectional symmetry. Classify line patterns by the types of
symmetries they can have.
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13.3 Isometries in a Strip

Exercise 13.3.1 Classify the isometries of a horizontal strip (a region between two hori-
zontal parallel lines in the plane).

Exercise 13.3.2 Assume that the strip is defined by the horizontal lines y = 1 and y = −1.
Find formulas for translation by an amount a in the direction of the axis of the strip, the
horizontal reflection, the vertical reflection about the line x = b, rotation by 180 degrees
about the point (c, 0), and the glide reflection about the axis with displacement d.

Exercise 13.3.3 An isometry is uniquely determined by its action on how many points?
What assumptions do we need to make about these points? If you know the action of an
isometry on these points, how can you determine the isometry algebraically? Geometrically?

Exercise 13.3.4 What is the outcome of composing any two of these isometries?

Exercise 13.3.5 When do two isometries commute?

Exercise 13.3.6 What is the identity isometry? What is the inverse of each isometry?

Exercise 13.3.7 A repeating strip pattern or frieze pattern is a figure (set of points) on
the strip such that the set of translational symmetries is generated by a single translational
symmetry (and its inverse). There may or may not be other symmetries. Classify strip
patterns by the types of symmetries they can have.
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13.4 Isometries in the Plane

Exercise 13.4.1 Classify the isometries of a plane.

Exercise 13.4.2 If you know the action of an isometry on three noncollinear points, how
can you determine the isometry geometrically?

Can we geometrically show that every isometry must be one of these four? Not sure about
glide reflections yet.

Exercise 13.4.3 Show that every isometry is the composition of at most three reflections.

Exercise 13.4.4 Find formulas for translation by the displacement (vector) (a, b), for rota-
tion by θ about the point (a, b), for reflection across the line ax + by + c = 0, and for glide
reflection across the line ax + by + c = 0 by an amount d.

Exercise 13.4.5 Show that every isometry is the composition of a rotation about the origin
or a reflection through a line passing through the origin, followed by a translation.

Exercise 13.4.6 If you know the action of an isometry on three noncollinear points, how
can you determine the isometry algebraically?

Exercise 13.4.7 What is the outcome of composing any two of these isometries?

Exercise 13.4.8 What is the composition of two reflections using a pair of non-intersecting
lines? Using a pair of intersecting lines?

Exercise 13.4.9 Characterize when two isometries commute.
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Exercise 13.4.10 Let R be the reflection through line � and S be a 180 degree rotation
about point P . Show that P lies on � iff (SR)2 is the identity.

Exercise 13.4.11 What is the identity isometry? What is the inverse of each isometry?

Exercise 13.4.12 A figure is a subset of the plane. Find a figure with a finite set of
symmetries. Make a “multiplication” table for its symmetries.

Exercise 13.4.13 Describe the group of symmetries of an equilateral triangle. Of a square.
Of a regular pentagon. Of a regular n-gon. Of a three-blade “propeller.” Of a circle.

Exercise 13.4.14 A repeating plane pattern or wallpaper pattern is a set of points in the
plane such that the set of translational symmetries is generated by two translations in two
noncollinear directions (and their inverses). There may or may not be other symmetries.
Classify some wallpaper patterns by their symmetries.

Exercise 13.4.15 Explain why the only angles of rotational symmetry available for wall-
paper patterns are 180 degrees, 120 degrees, 90 degrees, and 60 degrees.

Exercise 13.4.16 Show that you can tile the plane with congruent copies of any triangle.
Analyze the resulting symmetries.

Exercise 13.4.17 Show that you can tile the plane with congruent copies of any quadrilat-
eral. Analyze the resulting symmetries.

Exercise 13.4.18 Analyze the symmetries of the eleven regular and semiregular tilings.
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13.5 Axioms for Reflections

After stating the Incidence Axioms, we could have defined the notion of a one-to-one onto
mapping of the plane to itself, made “reflection” a particular type of mapping satisfying
certain axioms, and then defined two figures to be congruent if one can be mapped to the
other via a finite sequence of reflections. Distance must then be defined so that it is preserved
by congruence. For one way to do this; see Ewald, Geometry: An Introduction, in which
perpendicularity is also an undefined term satisfying certain axioms.

Exercise 13.5.1 What would be a reasonable definition of reflection in the geometric world
S2?

Exercise 13.5.2 Here is how to define reflection in H2: Let � be a LINE in H2. If � is an
arc of a great circle, define reflection through � as in the previous exercise. If � is not an arc
of a great circle, then there exists an ordinary point Q in the ordinary plane determined by
the equator of H2 from which all lines joining points in � to Q are tangent to the hemisphere.
Now let m be any line through Q that intersects the hemisphere in two points P and P ′.
We say that P and P ′ are reflections of each other with respect to �. (And any point on �
is a reflection of itself.) Can you show that distance is preserved under reflection?

We have also seen that using stereographic projection, H2 may be viewed as the set of all
points strictly within the region bounded by a unit circle C, and that LINES are diameters
of C, and arcs of circles meeting C at right angles. Suppose you have LINE � and a point P .
If � is a diameter of C, define the reflection of P reflection in the ordinary way. If � is not a
diameter of C, find the ordinary center Q and the ordinary radius r of the circle determined

by �. Define the reflection of P to be that point P ′ on the ray
−→
QP such that QP ·QP ′ = r2.

(The point P ′ is called the inversion of P in the circle.)

For a good approach to non-Euclidean geometry along these lines that lends itself very well
to using Wingeom or Geometer’s Sketchpad, see the book (available in paperback) Journey
into Geometries by Marta Sved.

Exercise 13.5.3 Returning to the Euclidean plane, define an isometry f to be an involution
if f 2 is the identity mapping. For every line � define Ra to be the reflection associated with
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the line. For every point P define HP to be the rotation by 180 degrees (half-turn) associated
with the point P . Prove the following:

1. A point P is incident to a line a iff HP Ra is an involution.

2. Two lines a and b are perpendicular iff RaRb is an involution.

3. A point P ′ is the reflection of a point P in a line a iff HP ′ = RaHP Ra.

In this way we can test certain geometric properties by testing certain algebraic properties.

Exercise 13.5.4 It is possible to take this exercise further and define POINTS to be half-
turns and LINES to be reflections (see the book by Ewald). Using the matrix forms of the
formulas you developed earlier, define POINTS to be appropriate 3×3 matrices, and LINES
to be appropriate 3 × 3 matrices, and define INCIDENCE according to property 1 above.
Prove that Axiom I-1 is satisfied.
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13.6 Isometries in Space

Extend as many of the planar results as you can to E3.
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14 Euclidean and Non-Euclidean Geometry

14.1 Introduction

Exercise 14.1.1 How are elements of non-Euclidean geometry introduced and developed
in the K–16 curriculum?

In this section we explore the consequences of adopting one or the other of the two following
contradictory axioms:

Axiom P-1: If � is any line and P �∈ �, there exists a unique line passing through P not
meeting � (in the plane of P, �). (See Kay, Section 4.1.)

Axiom P-2: If � is any line and P �∈ �, there exists more than one line passing through P
not meeting � (in the plane of P, �). (See Kay, Section 6.3.)

Exercise 14.1.2 Look through Kay again and classify which theorems can be proved with-
out invoking either P-1 or P-2.

Note in particular that the following theorems can be derived from the axioms preceding P-1
and P-2:

Theorem 14.1.1 The angle sum of a triangle is less than or equal to 180
degrees. (This is Theorem 2 in Section 3.4 of Kay.)

Theorem 14.1.2 If � is any line and P �∈ �, there exists at least one line
passing through P not meeting �.
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Exercise 14.1.3 Prove this theorem.

Theorem 14.1.3 The following statements are either all true or all false:

1. There exists at least one triangle with angle sum less than 180 degrees.

2. Every triangle has angle sum less than 180 degrees.

3. Rectangles (quadrilaterals with four right angles) do not exist.

The ASA, SSS, and AAS triangle congruence theorems also fall into this category. The latter
is perhaps surprising since at this point we cannot prove or disprove that the angle sum of
every triangle is 180 degrees.
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14.2 Hyperbolic Geometry: Consequences of Assuming P-2

Here are some consequences of choosing Axiom P-2 instead of Axiom P-1. See Chapter 6 of
Kay for these and many other fascinating results.

Theorem 14.2.1 If � is any line and P �∈ �, there exist an infinite number of
lines passing through P not meeting �.

Theorem 14.2.2 The angle sum of every triangle is less than 180 degrees.

Theorem 14.2.3 There exists a constant k such that the area of every triangle
is k(180− a− b− c), where a, b, and c are the angle measures of the triangle.

Theorem 14.2.4 If two triangles have congruent respective angles, then the
triangles are congruent.

Exercise 14.2.1 What are the regular and semiregular tilings in the hyperbolic plane?
Draw some of them.

The big question is: Are the axioms for hyperbolic geometry consistent? Is there a model?
The answer is that if the axioms for Euclidean geometry are consistent, then the axioms for
hyperbolic geometry must also be consistent, because we can construct a model for hyperbolic
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geometry (e.g., H2) using constructions within the model for Euclidean geometry. It is also
possible to go in the other direction, so we know that Euclidean geometry is consistent if and
only if hyperbolic geometry is consistent. But isn’t Euclidean geometry consistent? Don’t
we have the analytical models E2 and E3? Knowing that these models work depends upon
knowing that the axioms for integers are consistent, but Gödel proved that (in a certain
precise way) we cannot be sure of this.

See Appendix D of Kay for a unified axiom system for the Euclidean, spherical, and hyper-
bolic geometry.
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15 Dimension

Exercise 15.0.2 How is the notion of dimension introduced and developed in the K–16
curriculum?

15.1 Higher Dimensions

Exercise 15.1.1 What is the analog of a sphere in four or higher dimensions?

Exercise 15.1.2 What is the analog of a cube in four or higher dimensions? How many
vertices, edges, faces, and “hyper-faces” does it have? What does it look like if we unfold it
in various ways? What do its shadows in three-dimensional space look like?

Exercise 15.1.3 What is the analog of a tetrahedron in four or higher dimensions? How
many vertices, edges, faces, and “hyper-faces” does it have? What does it look like if we
unfold it in various ways? What do its shadows in three-dimensional space look like?

Exercise 15.1.4 What is the analog of a convex polyhedron in four or higher dimensions?
What is the analog of Euler’s relation?

Exercise 15.1.5 How can we visualize higher-dimensional objects? Read Flatland by Ed-
win A. Abbott. A new annotated edition has been published in 2001. Read also Banchoff,
Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions.
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15.2 Fractional Dimension

Exercise 15.2.1 How should we define the notion of dimension of a set?

Exercise 15.2.2 Let S be a line segment. If we obtain the line segment S ′ by scaling S up
by a factor of k (multiplying all distances between points of S by k, we can dissect S ′ into
k copies of S. What happens if we try this again when S is a square? What happens if we
try this again when S is a cube? How can we use these results to motivate a definition of
the dimension of these objects?

Exercise 15.2.3 Now consider S to be one of the three “sides” of the snowflake curve,
generated from one of the three sides of the original equilateral triangle. Show that when S
is scaled by a factor of 3, obtaining S ′, we can dissect it into four copies of S. What does
this suggest the dimension of S is?
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