MA614 Homework #2

Due Wednesday, January 24

- 1. Let a_n be the number of compositions of $n, n \ge 0$, in which every part is odd. (Let's choose by convention to let $a_0 = 1$, since every part of the empty composition is odd.)
 - (a) Find the ogf of $(a_n)_{n\geq 0}$.
 - (b) Use this to prove that $a_n = F_{n-1}, n \ge 1$.
 - (c) Give a bijection between compositions of n into odd parts, and compositions of n-1 into 1's and 2's, $n \ge 1$.
- 2. Let a_n be the number of compositions of n into parts greater than or equal to 2. (Let's choose by convention to let $a_0 = 1$, since every part of the empty composition is greater than or equal to 2.)
 - (a) Find the ogf of $(a_n)_{n\geq 0}$.
 - (b) Express a_n in terms of Fibonacci numbers.
 - (c) Give a bijection between compositions of n into parts greater than or equal to 2, and compositions of n-2 into 1's and 2's, $n \ge 2$.
- 3. Find the generating function $\sum_{n\geq 0} a_n x^n$ where $a_n = \sum_c c_1 \cdot c_2 \cdots c_k$ as $c = (c_1, c_2, \ldots, c_k)$ ranges over all compositions of n. Suggestion: Adapt the proof of the derivation of the generating function for all compositions.
- 4. Find the generating function $\sum_{n\geq 0} a_n x^n$ where $a_n = \sum_c 2^{c_1-1} \cdot 2^{c_2-1} \cdots 2^{c_k-1}$ as $c = (c_1, c_2, \ldots, c_k)$ ranges over all compositions of n. Then find use this to find an explicit formula for a_n .
- 5. Let a_n be the number of tilings of a $3 \times 2n$ rectangle by domino tiles (recalling that a domino tile has size 1×2). Find the ogf for the sequence $(a_n)_{n>0}$.
- 6. On your own: Try using Maple to find the first few terms of the Taylor expansion of various functions. For example, type

taylor(1/(1-x-x^2),x=0,10);

to see the beginning of the ogf for the Fibonacci numbers.