MA614 Homework #3

Due Wednesday, January 31

- 1. Define (c_1, \ldots, c_k) to be a *weak k-composition* of n if c_1, \ldots, c_k are nonnegative integers that sum to n (i.e., we are now allowed to use 0 as a part).
 - (a) Find a bijection between (ordinary) k-compositions of n + k and weak k-compositions of n.
 - (b) Find a formula for the number of weak k-compositions of n.
- 2. You have already proved, using generating functions, that the number of compositions (c_1, \ldots, c_k) of n in which c_i comes in 2^{c_i-1} "colors" equals 3^{n-1} , $n \ge 1$. Find a bijective proof of this fact by constructing a bijection between such colored compositions and sequences $d_1 \cdots d_{n-1}$ in which each $d_j \in \{0,1,2\}$. Suggestion: Start with such a sequence and interpret the 2's as plus signs.
- 3. Let a_n be the number of compositions (c_1, \ldots, c_k) of n in which the parts c_1, c_2, \ldots, c_k are alternately odd and even, starting with c_1 being odd. By convention, let's take $a_0 = 1$, since all parts of the empty composition (of which there are none) vacuously satisfy the condition. Find the ogf for $(a_n)_{n\geq 0}$. Suggestion: First write out the necessary generating function "long-hand" in the form

$$1+(\cdots)+(\cdots)(\cdots)+(\cdots)(\cdots)(\cdots)+(\cdots)(\cdots)(\cdots)(\cdots)(\cdots)+\cdots,$$

where the expressions in the parentheses need not all be identical.

- 4. Use the formula for the number of derangements D_n of length n to prove the recursions:
 - (a) $D_n = nD_{n-1} + (-1)^n$.
 - (b) $D_n = (n-1)(D_{n-1} + D_{n-2}).$
- 5. Let's consider lattice paths from (0,0,0) to (p,q,r) in the three-dimensional lattice \mathbb{Z}^3 , in which the allowable steps are called "X" (add (1,0,0)), "Y" (add (0,1,0)) and "Z" (add (0,0,1)). Determine a formula L(p,q,r) for the number of such paths.