Sign Reversing Involutions and Lattice Paths

Because I was covering the material a little quickly on Friday I decided to write up some notes on the lattice paths.

Let $u_1 = (0, 1)$, $v_1 = (k, n - k + 1)$, $u_2 = (1, 0)$, and $v_2 = (k + 1, n - k)$. The problem is to count the number of ordered pairs (P_1, P_2) of lattice paths, using only the steps E and N, for which P_1 goes from u_1 to v_1 , P_2 goes from u_2 to v_2 , and P_1 and P_2 do not intersect. Denote this set of paths by F. (Draw pictures for yourself.)

We begin by considering a larger set of ordered pairs of lattice paths: $S = \{(P_1, P_2) : P_1 \text{ goes from } u_1 \text{ to } v_i \text{ and } P_2 \text{ goes from } u_2 \text{ to } v_j \text{ for } i \neq j\}$. We sign the set S by $S^+ = \{(P_1, P_2) : P_1 : u_1 \rightarrow v_1 \text{ and } P_2 : u_2 \rightarrow v_2\}$, and $S^- = \{(P_1, P_2) : P_1 : u_1 \rightarrow v_2 \text{ and } P_2 : u_2 \rightarrow v_1\}$. So $\epsilon(P_1, P_2) = +1$ if $(P_1, P_2) \in S^+$ and $\epsilon(P_1, P_2) = -1$ if $(P_1, P_2) \in S^-$.

Now define an involution π on S as follows: If (P_1, P_2) do not intersect then set $\pi(P_1, P_2) = (P_1, P_2)$ (a fixed point). If (P_1, P_2) intersect then let q be the first lattice point of intersection as you follow the paths. Set $\pi(P_1, P_2) = (P'_1, P'_2)$ where P'_1 is obtained by following P_1 from u_1 to q and then following P_2 from q to the end of P_2 , and P'_2 is obtained by following P_2 from u_2 to q and then following P_1 from q to the end of P_1 . (Draw pictures!)

We now make the following observations:

- 1. $F \subset S^+$.
- 2. All pairs of paths in $S \setminus F$ must intersect (in fact, paths in S^- must cross), so F is the set of fixed points of π .
- 3. The number of paths $P: u_1 \to v_1$ is the same as the number of paths from (0,0) to (k, n-k), namely, $\binom{n}{k}$.
- 4. Similarly, the number of paths $P: u_2 \to v_2$ is the same as the number of paths from (0,0) to (k, n-k), namely, $\binom{n}{k}$.
- 5. The number of paths $P: u_1 \to v_2$ is the same as the number of paths from (0,0) to (k+1, n-k-1), namely, $\binom{n}{k+1}$.
- 6. The number of paths $P: u_2 \to v_1$ is the same as the number of paths from (0,0) to (k-1, n-k+1), namely, $\binom{n}{k-1}$.
- 7. Thus the number of pairs of paths in $S^+ = \binom{n}{k}\binom{n}{k} = \binom{n}{k}^2$.
- 8. Similarly the number of pairs of paths in $S^- = \binom{n}{k+1}\binom{n}{k-1}$.

Therefore

$$|F| = \sum_{a \in S} \epsilon(a)$$

yields

or

$$|F| = |S^+| - |S^-| = \binom{n}{k}^2 - \binom{n}{k+1}\binom{n}{k-1},$$
$$|F| = \begin{vmatrix} \binom{n}{k} & \binom{n}{k+1} \\ \binom{n}{k-1} & \binom{n}{k} \end{vmatrix}$$

As a consequence, $\binom{n}{k}^2 - \binom{n}{k+1}\binom{n}{k-1} \ge 0$ and so $\binom{n}{k+1}\binom{n}{k-1} \le \binom{n}{k}^2$, and thus the sequence $\binom{n}{k}$, $k = 0, \ldots, n$ is confirmed to be log-concave.