
Intro. to Polymake

• Written by Ewgenij Gawrilow, Michael Joswig, & various contributors.

• Website : www.polymake.org

• Can be run from the website as an application (limited capabilities), or installed and run in a
Linux environment. (Instructions for installation on the website)

When the program starts, enter the following line to begin constructing a polytope:

polytope> $p = new Polytope<Rational>();

From this point, you can either enter the vertex description (by providing a list of points to take
the convex hull of), or the halfspace description (by providing a list of linear inequalities). For this
example, suppose we want to enter a 3-dimensional cube:

Vertex Description Hyperplane Description

Note: All points must be preceded by a 1 in the
first coordinate (The leading 1 coordinate means
homogenization)

Note: Every inequality must be entered in such a
way that 0 is less than or equal to the dot product
of the entered row with the row (1, x1, x2, x3, . . .).

Command:

polytope> $p->POINTS=<<”.”;

Command:

polytope> $p->INEQUALITIES=<<”.”;

Sample Input:

polytope (2)> 1 0 0 0
polytope (3)> 1 1 0 0
polytope (4)> 1 0 1 0
polytope (5)> 1 1 1 0
polytope (6)> 1 0 0 1
polytope (7)> 1 1 0 1
polytope (8)> 1 0 1 1
polytope (9)> 1 1 1 1
polytope (10)> .

Sample Input:

polytope (2)> 1 -1 0 0
polytope (3)> 0 0 0 1
polytope (4)> 0 1 0 0
polytope (5)> 0 0 1 0
polytope (6)> 1 0 0 -1
polytope (7)> 1 0 -1 0
polytope (8)> .

Note: You can enter in vertex (or hyperplane) information in one line. This method is more
helpful when correcting errors. The following command shows how to enter the vertices of the cube
in one-line notation (the method for hyperplanes is similar):

polytope > $p->POINTS=[[1,0,0,0],[1,1,0,0],[1,0,1,0],[1,0,0,1], [1, 1, 1, 0], [1, 0, 1, 1],
[1, 1, 0, 1], [1, 1, 1, 1]];

If you are not running polymake online, you have the option of saving and loading your polytopes.
The following commands illustrate how this is done:

polytope> save($p, ”filename”);

polytope> $p = load(”filename.poly”);

Once the polytope is constructed, you can have polymake return various pieces of information
about the polytope. If the query has a yes/no answer, like ”Is the polytope simplicial?”, the program
returns a ”0” for no and a ”1” for yes. The following table lists some useful commands as well as
the information that they return. Polymake has far more commands than this, so check the website
to see what’s available.

Command Result
polytope> print $p->VERTICES; prints the vertices of $p
polytope> print $p->FACETS; prints the facet defining hyperplanes of $p
polytope> print $p->N VERTICES; prints the number of vertices of $p
polytope> print $p->N FACETS; prints the number of facets of $p

polytope> print $p->FACET SIZES;
prints the number of vertices in each of the facets
of $p

polytope> print $p->F VECTOR; prints the F-vector of $p
polytope> print $p->DIM; prints the dimension of $p
polytope> print $p->BOUNDED; tells you if $p is bounded
polytope> print $p->SIMPLE; tells you if $p is simple
polytope> print $p->SIMPLICIAL; tells you if $p is simplicial
polytope> print $p->NEIGHBORLY; tells you if $p is neighborly
polytope> print $p->CUBICAL; tells you if $p is cubical

polytope> print $p->GRAPH->ADJACENCY;
returns the vertex-edge adjacency graph of $p by
listing the vertices adjacent to each vertex of $p

polytope> print $p->GRAPH->EDGES;
returns the edges of the vertex-edge adjacency
graph of $p

Polymake also offers several options to visualize various aspects of your polytope. These options
are not available if you run Polymake from the website.

Command Result

polytope> $p->VISUAL;
renders a visualization of $p (≤ 3 dim) which can
be exported as a postscript file

polytope> $p->VISUAL(FacetStyle =>’hidden’); renders a wireframe visualization of $p

polytope> $p->VISUAL(FacetColor=>
[’blue’,’yellow’,’blue’,’yellow’,’blue’,’yellow’]);

many characteristics of the visualization can be
specified, like color, labels, vertex size, trans-
parency, etc.

polytope> $p->SCHLEGEL;
renders the Schlegel diagram of $p (if dim ≤ 3), if
dim = 4, just use the VISUAL command above

polytope> $p->SCHLEGEL->CONSTRUCTION;
shows how the Schlegel diagram is constructed for
3-dim polytopes

polytope> $p->GALE; produces a visual of the Gale diagram of $p
polytope> $p->HASSE DIAGRAM->VISUAL; produces a visual of the face lattice of $p

polytope> $p->GRAPH->VISUAL;
produces a visual of the vertex-edge adjacency
graph of $p

Polymake also offers many constructions which build new polytopes out of old polytopes. Here
are a few options

Command Result
polytope> $q=polarize($p); constructs the polar of $p and calls it $q
polytope> prefer ’jreality’
polytope> $q = truncation($p,All);

constructs a polytope by truncating all vertices of
$p

polytope> compose($p->VISUAL
(FacetStyle=> ”hidden”,VertexStyle=>
”hidden”),$q->VISUAL);

shows visualizations of $p and $q from above, to
see the effects of truncation

polytope> $q=transform($p, matrix, store)

applies a linear transformation to $p given by ’ma-
trix’, ’store’ is a Boolean determining whether to
store the reverse transformation as an attachment

More common constructions:

polytope>$r = simplex(n), cross(n), cube(n), conv($p, $q), pyramid($p), prism($p),
intersection($p, $q)

To exit polymake, enter the command polytope> exit();

