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1 Polytopes

Two excellent references are [16] and [51].

1.1 Convex Combinations and V-Polytopes

Definition 1.1 Let v1, . . . , vm be a finite set of points in Rn and λ1, . . . , λm ∈ R. Then

m∑
j=1

λjv
j

is called a linear combination of v1, . . . , vm. If λ1, . . . , λm ≥ 0 then it is called a nonnegative
(or conical) combination. If λ1 + · · · + λm = 1 then it is called an affine combination. If
both λ1, . . . , λm ≥ 0 and λ1 + · · · + λm = 1 then it is called convex combination. Note: We
will regard an empty linear or nonnegative combination as equal to the point O, but will not
consider empty affine or convex combinations.

Exercise 1.2 Give some examples of linear, nonnegative, affine, and convex combinations
in R1, R2, and R3. Include diagrams. 2

Definition 1.3 The set {v1, . . . , vm} ⊂ Rn is linearly independent if the only solution to∑m
j=1 λjv

j = O is the trivial one: λj = 0 for all j. Otherwise the set is linearly dependent.

Exercise 1.4 Prove that the set S = {v1, . . . , vm} ⊂ Rn is linearly dependent if and only if
there exists k such that vk can be written as a linear combination of the elements of S \{vk}.
2

Solution: Assume S is linearly dependent. Then there is a nontrivial solution to∑m
j=1 λjv

j = O. So there exists k such that λk 6= 0. Then

vk =
∑
j 6=k

−λj
λk

vj.

Therefore vk can be written as a linear combination of the elements of S \ {vk}.
Conversely, suppose there is a k such that vk can be written as a linear combination of

the elements of S \ {vk}, say vk =
∑
j 6=k λjv

j. Set λk = −1. Then
∑m
j=1 λjv

j = O provides
a nontrivial linear combination of the elements of S equaling O. Therefore S is linearly
dependent.
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Definition 1.5 The set {v1, . . . , vm} ⊂ Rn is affinely independent if the only solution to∑m
j=1 λjv

j = O,
∑m
j=1 λj = 0, is the trivial one: λj = 0 for all j. Otherwise the set is affinely

dependent.

Exercise 1.6 Prove that the set S = {v1, . . . , vm} ⊂ Rn is affinely dependent if and only
if there exists k such that vk can be written as an affine combination of the elements of
S \ {vk}. 2

Solution: Assume S is affinely dependent. Then there is a nontrivial solution to∑m
j=1 λjv

j = O,
∑m
j=1 λj = 0. So there exists k such that λk 6= 0. Then

vk =
∑
j 6=k

−λj
λk

vj.

Note that ∑
j 6=k

−λj
λk

= 1
λk

(−∑j 6=k λj)

= 1
λk
λk

= 1.

Therefore vk can be written as an affine combination of the elements of S \ {vk}.
Conversely, suppose there is a k such that vk can be written as an affine combination

of the elements of S \ {vk}, say vk =
∑
j 6=k λjv

j, where
∑
j 6=k λj = 1. Set λk = −1. Then∑m

j=1 λjv
j = O provides a nontrivial affine combination of the elements of S equaling O,

since
∑m
j=1 λj = 0.

Exercise 1.7 Prove that the set {v1, . . . , vm} is affinely independent if and only if the set
{v1 − vm, v2 − vm, . . . , vm−1 − vm} is linearly independent. 2

Solution: Assume that the set {v1, . . . , vm} is affinely independent. Assume that∑m−1
j=1 λj(v

j − vm) = O. We need to prove that λj = 0, j = 1, . . . ,m − 1. Now∑m−1
j=1 λjv

j− (
∑m−1
j=1 λj)v

m = O. Set λm = −∑m−1
j=1 λj. Then

∑m
j=1 λjv

j = O and
∑m
j=1 λj = 0.

Because the set {v1, . . . , vm} is affinely independent, we deduce λj = 0, j = 1, . . . ,m. There-
fore the set {v1 − vm, . . . , vm−1 − vm} is linearly independent.

Conversely, assume that the set {v1−vm, . . . , vm−1−vm} is linearly independent. Assume
that

∑m
j=1 λjv

j = O and
∑m
j=1 λj = 0. We need to prove that λj = 0, j = 1, . . . ,m. Now

λm = −∑m−1
j=1 λj, so

∑m−1
j=1 λjv

j−(
∑m−1
j=1 λj)v

m = O. This is equivalent to
∑m−1
j=1 λj(v

j−vm) =
O. Because the set {v1 − vm, . . . , vm−1 − vm} is linear independent, we deduce λj = 0,
j = 1, . . . ,m− 1. But λm = −∑m−1

j=1 λj, so λm = 0 as well. Therefore the set {v1, . . . , vm} is
affinely independent.
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Definition 1.8 A subset S ⊆ Rn is a subspace (respectively, cone, affine set, convex set)
if it is closed under all linear (respectively, nonnegative, affine, convex) combinations of its
elements. Note: This implies that subspaces and cones must contain the point O.

Exercise 1.9 Give some examples of subspaces, cones, affine sets, and convex sets in R1,
R2, and R3. 2

Exercise 1.10 Is the empty set a subspace, a cone, an affine set, a convex set? Is Rn a
subspace, a cone, an affine set, a convex set? 2

Exercise 1.11 Prove that a nonempty subset S ⊆ Rn is affine if and only if it is a set of
the form L+ x, where L is a subspace and x ∈ Rn. 2

Exercise 1.12 Are the following sets subspaces, cones, affine sets, convex sets?

1. {x ∈ Rn : Ax = O} for a given matrix A.

Solution: This set is a subspace, hence also a cone, an affine set, and a convex set.

2. {x ∈ Rn : Ax ≤ O} for a given matrix A.

Solution: This is a cone, hence also convex. But it is not necessarily a subspace or an
affine set.

3. {x ∈ Rn : Ax = b} for a given matrix A and vector b.

Solution: this set is an affine set, hence also convex. But it is not necessarily a subspace
or a cone.

4. {x ∈ Rn : Ax ≤ b} for a given matrix A and vector b.

Solution for this case: This set is convex. By Proposition 1.13 it suffices to show
that it is closed under convex combinations of two elements. So assume Av1 ≤ b and
Av2 ≤ b, and λ1, λ2 ≥ 0 such that λ1 + λ2 = 1. We need to verify that Av ≤ b,
where v = λ1v

1 + λ2v
2. But Av = A(λ1v

1 + λ2v
2) = λ1Av

1 + λ2Av2. Knowing that
Av1 ≤ b, Av2 ≤ b and λ1, λ2 ≥ 0, we deduce that λ1Av

1 ≤ λ1b and λ2Av
2 ≤ λ2b. Thus

λ1Av
1 + λ2Av2 ≤ λ1b + λ2b = (λ1 + λ2)b = b. Therefore Av ≤ b and the set is closed

under pairwise convex combinations.

2

Proposition 1.13 A subset S ⊆ Rn is a subspace (respectively, a cone, an affine set, a
convex set) if and only it is closed under all linear (respectively, nonnegative, affine, convex)
combinations of pairs of elements.
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Proof. Exercise. 2
Solution for convex combinations: It is immediate that if S is convex then it is closed

under convex combinations of pairs of elements. So, conversely, assume that S is closed
under convex combinations of pairs of elements. We will prove by induction on m ≥ 1 that
if v1, . . . , vm ∈ S, λ1, . . . , λm ≥ 0, and

∑m
j=1 λj = 1, then v ∈ S, where v =

∑m
j=1 λjv

j. If
m = 1 then λ1 = 1 and v ∈ S trivially. If m = 2 then v ∈ S by the assumption that S is
closed under convex combinations of pairs of elements. So assume m > 2. First consider the
case that λm = 1. Then v equals vm and so v ∈ S. So now assume that λm < 1. Then

v =

m−1∑
j=1

λjv
j

+ λmv
m

= (1− λm)

m−1∑
j=1

λj
1− λm

vj

+ λmv
m

= (1− λm)w + λmv
m,

where

w =
m−1∑
j=1

λj
1− λm

vj.

Note that 1 − λm > 0, and so λj
1−λm ≥ 0, j = 1, . . . ,m − 1. Also note that

∑m−1
j=1

λj
1−λm = 1.

So w ∈ X by the induction hypothesis. Hence v ∈ S since it is convex combination of the
pair w and vm. Therefore S is closed under convex combinations of sets of m elements.

Proposition 1.14 The intersection of any collection of subspaces (respectively, cones, affine
sets, convex sets) is a subspace (respectively, cone, affine set, convex set).

Proof. Exercise. 2
Solution (for convex sets): Suppose each Si, i ∈ I, is convex, and S =

⋂
i∈I Si. Let

v1, . . . , vm ∈ S and λ1, . . . , λm ∈ R such that λ1 + · · · + λm = 1 and λ1, . . . , λm ≥ 0. Let
v =

∑m
j=1 λiv

i. Then v1, . . . , vm ∈ Si for all i ∈ I. Since Si is convex, v ∈ Si for all i. Hence
v ∈ ⋂i∈I Si = S, and so S is convex.

Definition 1.15 Let V ⊆ Rn. Define the linear span (respectively, cone, affine span, convex
hull) of V , denoted spanV (respectively, coneV , affV , convV ) to be the intersection of all
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subspaces (respectively, cones, affine sets, convex sets) containing V ,

spanV =
⋂{S : V ⊆ S, S is a subspace},

coneV =
⋂{S : V ⊆ S, S is a cone},

affV =
⋂{S : V ⊆ S, S is an affine set},

convV =
⋂{S : V ⊆ S, S is a convex set}.

Lemma 1.16 For all V ⊆ Rn, the set spanV (respectively, coneV , affV , convV ) is a
subspace (respectively, cone, affine set, convex set).

Proof. Exercise. 2

Lemma 1.17 “Linear/nonnegative/affine/convex combinations of lin-
ear/nonnegative/affine/convex combinations are linear/nonnegative/affine/convex combina-
tions.”

Proof. Exercise. 2
Solution (for convex combinations): Suppose wi =

∑mi
j=1 λijv

ij, i = 1, . . . , `, where λij ≥ 0

for all i, j, and
∑mi
j=1 λij = 1 for all i. Let w =

∑`
i=1 µiw

i, where µi ≥ 0 and
∑`
i=1 µi = 1.

Then w =
∑`
i=1

∑mi
j=1 µiλijv

ij, where µiλij ≥ 0 for all i, j, and

∑`
i=1

∑mi
j=1 µiλij =

∑`
i=1 µi

∑mi
j=1 λij

=
∑`
i=1 µi(1)

= 1.

Proposition 1.18 Let V ⊆ Rn. Then spanV (respectively, coneV , affV , convV ) equals
the set of all linear (respectively, nonnegative, affine, convex) combinations of elements of
V .

Proof. Exercise. 2
Solution (for convex sets): Let W be the set of all convex combinations of elements of

V . By Lemma 1.17, W is closed under convex combinations, and hence is a convex set.
Since V ⊆ W , we conclude convV ⊆ W . On the other hand, since convV is a convex
set containing V , convV must contain all convex combinations of elements of V . Hence
W ⊆ convV . Therefore W = convV .

5



Lemma 1.19 Let v1, . . . , vm ∈ Rn. Let A be the matrix[
v1 · · · vm

1 · · · 1

]

That is to say, A is created by listing the points vi as columns and then appending a row of 1’s.
Let v ∈ Rn. Then v equals the convex combination

∑m
i=1 λiv

i if and only if λ = [λ1, . . . , λm]T

is a solution of

A


λ1
...
λm

 =

[
v
1

]

λ1, . . . , λm ≥ 0

Proof. Exercise. 2

Exercise 1.20 What can you say about the rank of the matrix A in the previous problem?
2

Theorem 1.21 (Carathéodory) Suppose x is a convex combination of v1, . . . , vm ∈ Rn,
where m > n + 1. Then x is also a convex combination of a subset of {v1, . . . , vm} of
cardinality at most n+ 1.

Proof. Suggestion: Think about the matrix A in the previous two problems. Assume that
the columns associated with positive values of λi are linearly dependent. What can you do
now? 2

Solution: Proof by induction on m ≥ n+ 1. The statement is trivially true if m = n+ 1.
Assume that m > n+ 1 and that x is a convex combination of v1, . . . , vm. Define the matrix
A as above and let λ∗ be a solution to

Aλ =

[
x
1

]
λ ≥ O

If any λ∗k = 0 then we actually have x written as a convex combination of the elements
of {v1, . . . , vm} \ {vk}, a set of cardinality m − 1, so the result is true by the induction
hypothesis. Thus we assume that λ∗j > 0 for all j. The matrix A has more columns than
rows (m > n+ 1) so there is a nontrivial element of the nullspace of A, say, µ∗. So Aµ∗ = O.
That µ∗ is nontrivial means that at least one µ∗j is not zero. The last row of A implies that
the sum of the µ∗j equals 0. From this we conclude that at least one µ∗j is negative. Now

6



consider λ = λ∗ + tµ∗, where t is a nonnegative real number. Start with t = 0 and increase
t until you reach the first value, t∗, for which some component of λ∗ + tµ∗ becomes zero. In
fact,

t∗ = min
j:µ∗j<0

{
λ∗j
−µ∗j

}
.

Hence λ is a new solution to

Aλ =

[
x
1

]
λ ≥ O

with fewer positive entries than λ∗. Let’s assume λk = 0. Then we have x written as a
convex combination of the elements of {v1, . . . , vm} \ {vk}, a set of cardinality m− 1, so the
result is true by the induction hypothesis.

Definition 1.22 A V-polytope is the convex hull of a nonempty finite collection of points
in Rn.

Exercise 1.23 Construct some examples of V-polytopes in R, R2, and R3. 2

Exercise 1.24 Is the empty set a V-polytope? 2

Exercise 1.25 In each of the following cases describe convV .

1. V = {[±1,±1,±1]} ⊂ R3.

2. V = {[1, 0, 0], [0, 1, 0], [0, 0, 1]} ⊂ R3.

3. V = {[±1, 0, 0], [0,±1, 0], [0, 0,±1]} ⊂ R3.

4. V = {0,±1
2
,±2

3
,±3

4
, . . .} ⊂ R.

2

Theorem 1.26 (Radon) Let V = {v1, . . . , vm} ⊆ Rn. If m > n + 1 then there exists a
partition V1, V2 of V such that convV1 ∩ convV2 6= ∅. 2

Proof. Exercise. 2
Solution: Construct the matrix A as in the proof of Theorem 1.21. Because A has more

columns than rows (m > n + 1) there is a nonzero element µ∗ in its nullspace, Aµ∗ = O.
The last row of A then implies that at least one component of µ∗ is negative and at least

7



one component is positive. Let I⊕ = {i : µ∗i ≥ 0} and I− = {i : µi < 0}. Note that I⊕ and
I− are each nonempty. Then ∑

i∈I⊕
µ∗i v

i +
∑
i∈I−

µ∗i v
i = O,

∑
i∈I⊕

µ∗i +
∑
i∈I−

µ∗i = 0.

So ∑
i∈I⊕

µ∗i v
i =

∑
i∈I−

(−µ∗i )vi,

∑
i∈I⊕

µ∗i =
∑
i∈I−

(−µ∗i ).

Define c =
∑
i∈I⊕ µ

∗
i =

∑
i∈I−(−µ∗i ). Note that c is positive. Dividing through by c yields∑

i∈I⊕
λ∗i v

i =
∑
i∈I−

λ∗i v
i,

∑
i∈I⊕

λ∗i =
∑
i∈I−

λ∗i = 1,

λ ≥ O,

where λ∗i =
µ∗i
c

if i ∈ I⊕, and λ∗i =
−µ∗i
c

if i ∈ I−. Taking x =
∑
i∈I⊕ λ

∗
i v
i =

∑
i∈I− λ

∗
i v
i,

V1 = {vi : i ∈ I⊕}, and V2 = {vi : i ∈ I−}, we see that x is a convex combination of elements
of V1 as well as elements of V2. So convV1 ∩ convV2 6= ∅.

Theorem 1.27 (Helly) Let V = {V1, . . . , Vm} be a family of m convex subsets of Rn with
m ≥ n+1. If every subfamily of n+1 sets in V has a nonempty intersection, then ∩mi=1Vi 6= ∅.
2

Proof. Exercise. 2

1.2 Linear Inequalities and H-Polytopes

Definition 1.28 Let a ∈ Rn and b0 ∈ R. Then aTx = b0 is called a linear equation, and
aTx ≤ b0 and aTx ≥ b0 are called linear inequalities.

Further, if a 6= O, then the set {x ∈ Rn : aTx = b0} is called a hyperplane, the sets
{x ∈ Rn : aTx ≤ b0} and {x ∈ Rn : aTx ≥ b0} are called closed halfspaces , and the sets
{x ∈ Rn : aTx < b0} and {x ∈ Rn : aTx > b0} are called open halfspaces.

8



Exercise 1.29 Why do we require a 6= O in the definitions of hyperplanes and halfspaces?
2

Definition 1.30 A subset S ⊆ Rn is bounded if there exists a number M ∈ R such that
‖x‖ ≤M for all x ∈ S.

Definition 1.31 We can represent systems of a finite collection of linear equations or linear
inequalities in matrix form. For example, the system

a11x1 + · · ·+ a1nxn ≤ b1
...

am1x1 + · · ·+ amnxn ≤ bm

can be written compactly as
Ax ≤ b

where

A =


a11 · · · a1n
...

...
...

am1 · · · amn


and

b =


b1
...
bm


A nonempty subset of Rn of the form {x ∈ Rn : Ax ≤ b} is called an H-polyhedron. A

bounded H-polyhedron is called an H-polytope.

Exercise 1.32 Construct some examples of H-polyhedra and H-polytopes in R, R2, and
R3. 2

Exercise 1.33 Is the empty set an H-polytope? Is Rn an H-polyhedron? 2

Exercise 1.34 Prove that a subset of Rn described by a finite collection of linear equations
and inequalities is an H-polyhedron. 2

Exercise 1.35 In each case describe the H-polyhedron P = {x : Ax ≤ b} where A and b
are as given.

9



1.

A =



1 0 0
0 1 0
0 0 1
−1 0 0

0 −1 0
0 0 −1


b =



1
1
1
1
1
1


2.

A =



1 1 1
−1 1 1

1 −1 1
−1 −1 1

1 1 −1
−1 1 −1

1 −1 −1
−1 −1 −1


b =



1
1
1
1
1
1



3.

A =


−1 0 0

0 −1 0
0 0 −1
1 1 1
−1 −1 −1

 b =


0
0
0
1
−1


4.

A =



0 1 1
1 0 1
1 1 0
−1 0 0

0 −1 0
0 0 −1


b =



1
1
1
0
0
0


2

1.3 H-Polytopes are V-Polytopes

Definition 1.36 Suppose P = {x ∈ Rn : Ax ≤ b} is an H-polytope and x ∈ P . Partition
the linear inequalities into two sets: those that x satisfies with equality (the tight or bind-
ing inequalities) and those that x satisfies with strict inequality (the slack or nonbinding
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inequalities):
A1x ≤ b1 where A1x = b1,
A2x ≤ b2 where A2x < b2.

Define N(x) to be the linear space that is the nullspace of the matrix A1; i.e., the solution
space to A1x = O. Even though this is not an official term in the literature, we will call
N(x) the nullspace of x (with respect to the system defining P ). 2

Definition 1.37 Let P be an H-polyhedron and x ∈ P such that dimN(x) = 0. Then x is
called a vertex of P . 2

Lemma 1.38 No two different vertices of an H-polyhedron have the same set of tight in-
equalities. 2

Solution: Assume that x and x′ are each vertices of the P = {x ∈ Rn : Ax ≤ b}, and
that they have the same associated submatrix A1 for the set of tight inequalities. Then
A1x = b1 and A1x′ = b1, so A(x − x′) = O. Because the nullspace of A1 is trivial, we
conclude x− x′ = O; i.e., x = x′.

Proposition 1.39 If P is an H-polyhedron then P has a finite number of vertices. 2

Solution: There is only a finite number of choices for a submatrix A1.

Lemma 1.40 Let P = {x ∈ Rn : Ax ≤ b} be an H-polytope and x ∈ P such that x is not a
vertex. Choose any nonzero w ∈ N(x) and consider the line x+ tw. Then there is a positive
value of t for which x + tw is in P and has more tight constraints than x. Similarly, there
is a negative value of t for which x+ tw is in P and has more tight constraints than x. 2

Theorem 1.41 (Minkowski) Every H-polytope P is the convex hull of its vertices. Hence
every H-polytope is a V-polytope. Suggestion: Prove this by induction on the number of slack
inequalities for a point x ∈ P . 2

Solution: Let x ∈ P and assume x has k slack inequalities.
First assume k = 0. Then Ax = b. Claim: x is itself a vertex. If not, then there is a

nontrivial w 6= O in the nullspace of A, and so A(x + tw) = b for all real t. This implies P
contains a line, contradicting that it is a polytope (and hence bounded). Therefore x is a
vertex and trivially is a convex combination of vertices; namely, itself.

Now assume that k > 0. If x is itself a vertex, then we are done as before. So assume that
x is not a vertex. By Lemma 1.40 there exist points x1 = x+t1w with t1 > 0, and x2 = x+t2w
with t < 0, each in P but having fewer slack inequalities. By the induction hypothesis, each
can be written as a convex combination of vertices of P . But also x = −t2

t1−t2x
1 + t1

t1−t2x
2. So

x is a convex combination of x1 and x2. By Lemma 1.17, x is itself a convex combination of
vertices of P , and we are done.

11



Exercise 1.42 Determine the vertices of the polytope in R2 described by the following
inequalities:

x1 + 2x2 ≤ 120
x1 + x2 ≤ 70

2x1 + x2 ≤ 100
x1 ≥ 0
x2 ≥ 0

2

Exercise 1.43 Determine the vertices of the polytope in R3 described by the following
inequalities:

x1 + x2 ≤ 1
x1 + x3 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

2

Exercise 1.44 Consider the polytope in R9 described by the following inequalities:

x11 + x12 + x13 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 = 1
x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1

x11 ≥ 0
x12 ≥ 0
x13 ≥ 0
x21 ≥ 0
x22 ≥ 0
x23 ≥ 0
x31 ≥ 0
x32 ≥ 0
x33 ≥ 0

Find at least one vertex. 2
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1.4 V-Polytopes are H-Polytopes

In order to prove the converse of the result in the previous section, i.e., to prove that every
V-polytope is an H-polytope, we will need to invoke a procedure called Fourier-Motzkin
elimination, which will be discussed later. What we need to know about this procedure for
the moment is that whenever we have a polyhedron P described by a system of inequalities
in the variables, say, x1, . . . , xn, we can eliminate one or more variables of our choosing, say,
xk+1, . . . , xn, to obtain a new system of inequalities describing the projection of P onto the
subspace associated with x1, . . . , xk.

Theorem 1.45 (Weyl) If P is a V-polytope, then it is an H-polytope.

Proof. Assume P = conv {v1, . . . , vm}. Consider P ′ = {(r, x) :
∑m
i=1 riv

i − x =
O,

∑m
i=1 ri = 1, r ≥ O}. Then P ′ = {(r, x) :

∑m
i=1 riv

i−x ≤ O,
∑m
i=1 riv

i+x ≥ O,
∑m
i=1 ri ≤

1,
∑m
i=1 ri ≥ 1, r ≥ O}. Then a description for P in terms of linear inequalities is obtained

from that of P ′ by using Fourier-Motzkin elimination to eliminate the variables r1, . . . , rm.
Finally, we note that every V-polytope is necessarily a bounded set—we can, for example,
bound the norm of any feasible point x in terms of the norms of v1, . . . , vm: if x =

∑m
i=1 riv

i

with
∑m
i=1 ri = 1 and ri ≥ 0 for all i = 1, . . . ,m, then

‖x‖ =

∥∥∥∥∥
m∑
i=1

riv
i

∥∥∥∥∥
≤

m∑
i=1

ri‖vi‖

≤
m∑
i=1

‖vi‖.

2

Exercise 1.46 Experiment with the online demo of “polymake,” http://www.polymake.

org/doku.php/boxdoc, which can convert between descriptions of polytopes as V-polytopes
and as H-polytopes. 2
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2 Theorems of the Alternatives

2.1 Systems of Equations

Let’s start with a system of linear equations:

Ax = b.

Suppose you wish to determine whether this system is feasible or not. One reasonable
approach is to use Gaussian elimination. If the system has a solution, you can find a
particular one, x. (You remember how to do this: Use elementary row operations to put
the system in row echelon form, select arbitrary values for the independent variables and
use back substitution to solve for the dependent variables.) Once you have a feasible x (no
matter how you found it), it is straightforward to convince someone else that the system is
feasible by verifying that Ax = b.

If the system is infeasible, Gaussian elimination will detect this also. For example, con-
sider the system

x1 + x2 + x3 + x4 = 1
2x1 − x2 + 3x3 = −1

8x1 + 2x2 + 10x3 + 4x4 = 0

which in matrix form looks like  1 1 1 1 1
2 −1 3 0 −1
8 2 10 4 0

 .
Perform elementary row operations to arrive at a system in row echelon form: 1 0 0

0 1 0
0 −2 1


 1 0 0
−2 1 0
−8 0 1


 1 1 1 1 1

2 −1 3 0 −1
8 2 10 4 0

 =

 1 1 1 1 1
0 −3 1 −2 −3
0 0 0 0 −2

 ,
which implies 1 0 0

−2 1 0
−4 −2 1


 1 1 1 1 1

2 −1 3 0 −1
8 2 10 4 0

 =

 1 1 1 1 1
0 −3 1 −2 −3
0 0 0 0 −2

 .
Immediately it is evident that the original system is infeasible, since the resulting equivalent
system includes the equation 0x1 + 0x2 + 0x3 + 0x4 = −2.
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This equation comes from multiplying the matrix form of the original system by the third
row of the matrix encoding the row operations: [−4,−2, 1]. This vector satisfies

[
−4 −2 1

]  1 1 1 1
2 −1 3 0
8 2 10 4

 =
[

0 0 0 0
]

and [
−4 −2 1

]  1
−1

0

 = −2.

In matrix form, we have found a vector y such that yTA = O and yT b 6= 0. Gaussian
elimination will always produce such a vector if the original system is infeasible. Once you
have such a y (regardless of how you found it), it is easy to convince someone else that the
system is infeasible.

Of course, if the system is feasible, then such a vector y cannot exist, because otherwise
there would also be a feasible x, and we would have

0 = OTx = (yTA)x = yT (Ax) = yT b 6= 0,

which is impossible. (Be sure you can justify each equation and inequality in the above
chain.) We have established our first Theorem of the Alternatives:

Theorem 2.1 Either the system
(I) Ax = b

has a solution, or the system

(II)
yTA = OT

yT b 6= 0

has a solution, but not both.

As a consequence of this theorem, the following question has a “good characterization”:
Is the system (I) feasible? I will not give an exact definition of this concept, but roughly
speaking it means that whether the answer is yes or no, there exists a “short” proof. In this
case, if the answer is yes, we can prove it by exhibiting any particular solution to (I). And
if the answer is no, we can prove it by exhibiting any particular solution to (II).

Geometrically, this theorem states that precisely one of the alternatives occurs:

1. The vector b is in the column space of A.

2. There is a vector y orthogonal to each column of A (and hence to the entire column
space of A) but not orthogonal to b.
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2.2 Fourier-Motzkin Elimination — A Starting Example

Now let us suppose we are given a system of linear inequalities

Ax ≤ b

and we wish to determine whether or not the system is feasible. If it is feasible, we want to
find a particular feasible vector x; if it is not feasible, we want hard evidence!

It turns out that there is a kind of analog to Gaussian elimination that works for systems
of linear inequalities: Fourier-Motzkin elimination. We will first illustrate this with an
example:

(I)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3
x1 ≤ 2

−2x1 + x2 ≤ 0
−x1 ≤ −1
8x2 ≤ 15

Our goal is to derive a second system (II) of linear inequalities with the following properties:

1. It has one fewer variable.

2. It is feasible if and only if the original system (I) is feasible.

3. A feasible solution to (I) can be derived from a feasible solution to (II).

(Do you see why Gaussian elimination does the same thing for systems of linear equations?)
Here is how it works. Let’s eliminate the variable x1. Partition the inequalities in (I) into
three groups, (I−), (I+), and (I0), according as the coefficient of x1 is negative, positive, or
zero, respectively.

(I−)
−2x1 + x2 ≤ 0
−x1 ≤ −1

(I+)
x1 − 2x2 ≤ −2
x1 + x2 ≤ 3
x1 ≤ 2

(I0) 8x2 ≤ 15

For each pair of inequalities, one from (I−) and one from (I+), multiply by positive
numbers and add to eliminate x1. For example, using the first inequality in each group,

(1
2
)(−2x1 + x2 ≤ 0)

+(1)(x1 − 2x2 ≤ −2)
−3

2
x2 ≤ −2
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System (II) results from doing this for all such pairs, and then also including the in-
equalities in (I0):

(II)

−3
2
x2 ≤ −2

3
2
x2 ≤ 3

1
2
x2 ≤ 2

−2x2 ≤ −3
x2 ≤ 2
0x2 ≤ 1
8x2 ≤ 15

The derivation of (II) from (I) can also be represented in matrix form. Here is the
original system: 

1 −2 −2
1 1 3
1 0 2
−2 1 0
−1 0 −1

0 8 15


Obtain the new system by multiplying on the left by the matrix that constructs the

desired nonnegative combinations of the original inequalities:

1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1





1 −2 −2
1 1 3
1 0 2
−2 1 0
−1 0 −1

0 8 15



=



0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 15


.

To see why the new system has the desired properties, let’s break down this process a bit.
First scale each inequality in the first two groups by positive numbers so that each coefficient
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of x1 in (I−) is −1 and each coefficient of x1 in (I+) is +1.

(I−)
−x1 + 1

2
x2 ≤ 0

−x1 ≤ −1
(I+)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3
x1 ≤ 2

(I0) 8x2 ≤ 15

Isolate the variable x1 in each of the inequalities in the first two groups.

(I−)
1
2
x2 ≤ x1

1 ≤ x1
(I+)

x1 ≤ 2x2 − 2
x1 ≤ −x2 + 3

x1 ≤ 2
(I0) 8x2 ≤ 15

For each pair of inequalities, one from (I−) and one from (I+), create a new inequality
by “sandwiching” and then eliminating x1. Keep the inequalities in (I0).

(IIa)

{
1
2
x2

1

}
≤ x1 ≤


2x2 − 2
−x2 + 3

2


8x2 ≤ 15

−→ (IIb)

1
2
x2 ≤ x1 ≤ 2x2 − 2

1
2
x2 ≤ x1 ≤ −x2 + 3

1
2
x2 ≤ x1 ≤ 2

1 ≤ x1 ≤ 2x2 − 2
1 ≤ x1 ≤ −x2 + 3

1 ≤ x1 ≤ 2
8x2 ≤ 15

−→ (IIc)

1
2
x2 ≤ 2x2 − 2

1
2
x2 ≤ −x2 + 3

1
2
x2 ≤ 2

1 ≤ 2x2 − 2
1 ≤ −x2 + 3

1 ≤ 2
8x2 ≤ 15

−→ (II)

−3
2
x2 ≤ −2

3
2
x2 ≤ 3

1
2
x2 ≤ 2

−2x2 ≤ −3
x2 ≤ 2
0x2 ≤ 1
8x2 ≤ 15

Observe that the system (II) does not involve the variable x1. It is also immediate that
if (I) is feasible, then (II) is also feasible. For the reverse direction, suppose that (II) is
feasible. Set the variables (in this case, x2) equal to any specific feasible values (in this case
we choose a feasible value x2). From the way the inequalities in (II) were derived, it is
evident that

max

{
1
2
x2

1

}
≤ min


2x2 − 2
−x2 + 3

2

 .
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So there exists a specific value x1 of x1 such that

{
1
2
x2

1

}
≤ x1 ≤


2x2 − 2
−x2 + 3

2


8x2 ≤ 15

We will then have a feasible solution to (I).

2.3 Showing our Example is Feasible

From this example, we now see how to eliminate one variable (but at the possible considerable
expense of increasing the number of inequalities). If we have a solution to the new system, we
can determine a value of the eliminated variable to obtain a solution of the original system.
If the new system is infeasible, then so is the original system.

From this we can tackle any system of inequalities: Eliminate all of the variables one by
one until a system with no variables remains! Then work backwards to determine feasible
values of all of the variables.

In our previous example, we can now eliminate x2 from system (II):

2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0





0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 15



=



0 0 2/3
0 0 8/3
0 0 2/3
0 0 13/24
0 0 1/2
0 0 5/2
0 0 1/2
0 0 3/8
0 0 1


.
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Each final inequality, such as 0x1 + 0x2 ≤ 2/3, is feasible, since the left-hand side is zero
and the right-hand side is nonnegative. Therefore the original system is feasible. To find
one specific feasible solution, rewrite (II) as

{4/3, 3/2} ≤ x2 ≤ {2, 4, 15/8} .

We can choose, for example, x2 = 3/2. Substituting into (I) (or (IIa)), we require

{3/4, 1} ≤ x1 ≤ {1, 3/2, 2} .

So we could choose x1 = 1, and we have a feasible solution (1, 3/2) to (I).

2.4 An Example of an Infeasible System

Now let’s look at the system:

(I)

x1 − 2x2 ≤ −2
x1 + x2 ≤ 3
x1 ≤ 2

−2x1 + x2 ≤ 0
−x1 ≤ −1
8x2 ≤ 11

Multiplying by the appropriate nonnegative matrices to successively eliminate x1 and x2, we
compute: 

1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1





1 −2 −2
1 1 3
1 0 2
−2 1 0
−1 0 −1

0 8 11



=



0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 11


(II)

20



and 

2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0





0 −3/2 −2
0 3/2 3
0 1/2 2
0 −2 −3
0 1 2
0 0 1
0 8 11



=



0 0 2/3
0 0 8/3
0 0 2/3
0 0 1/24
0 0 1/2
0 0 5/2
0 0 1/2
0 0 −1/8
0 0 1


(III)

Since one inequality is 0x1+0x2 ≤ −1/8, the final system (III) is clearly infeasible. Therefore
the original system (I) is also infeasible. We can go directly from (I) to (III) by collecting
together the two nonnegative multiplier matrices:

2/3 2/3 0 0 0 0 0
2/3 0 2 0 0 0 0
2/3 0 0 0 1 0 0
2/3 0 0 0 0 0 1/8
0 2/3 0 1/2 0 0 0
0 0 2 1/2 0 0 0
0 0 0 1/2 1 0 0
0 0 0 1/2 0 0 1/8
0 0 0 0 0 1 0





1 0 0 1/2 0 0
0 1 0 1/2 0 0
0 0 1 1/2 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 1


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=



2/3 2/3 0 2/3 0 0
2/3 0 2 4/3 0 0
2/3 1 0 1/3 1 0
2/3 0 0 1/3 0 1/8
1/2 2/3 0 1/3 1/2 0
1/2 0 2 1 1/2 0
1/2 1 0 0 3/2 0
1/2 0 0 0 1/2 1/8
0 0 1 0 1 0


= M.

You can check that M(I) = (III). Since M is a product of nonnegative matrices, it will itself
be nonnegative. Since the infeasibility is discovered in the eighth inequality of (III), this
comes from the eighth row of M , namely, [1/2, 0, 0, 0, 1/2, 1/8]. You can now demonstrate
directly to anyone that (I) is infeasible using these nonnegative multipliers:

(1
2
)(x1 − 2x2 ≤ −2)

+(1
2
)(−x1 ≤ −1)

+(1
8
)(8x2 ≤ 11)

0x1 + 0x2 ≤ −1
8

In particular, we have found a nonnegative vector y such that yTA = OT but yT b < 0.

2.5 Fourier-Motzkin Elimination in General

Often I find that it is easier to understand a general procedure, proof, or theorem from a
few good examples. Let’s see if this is the case for you.

We begin with a system of linear inequalities

(I)
n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m.

Let’s write this in matrix form as
Ax ≤ b

or
Aix ≤ bi, i = 1, . . . ,m

where Ai represents the ith row of A.
Suppose we wish to eliminate the variable xk. Define

I− = {i : aik < 0}
I+ = {i : aik > 0}
I0 = {i : aik = 0}

22



For each (p, q) ∈ I− × I+, construct the inequality

− 1

apk
(Apx ≤ bp) +

1

aqk
(Aqx ≤ bq).

By this I mean the inequality(
− 1

apk
Ap +

1

aqk
Aq
)
x ≤ − 1

apk
bp +

1

aqk
bq. (1)

System (II) consists of all such inequalities, together with the original inequalities in-
dexed by the set I0.

It is clear that if we have a solution (x1, . . . , xn) to (I), then (x1, . . . , xk−1, xk+1, . . . , xn)
satisfies (II). Now suppose we have a solution (x1, . . . , xk−1, xk+1, . . . , xn) to (II). Inequal-
ity (1) is equivalent to

1

apk
(bp −

∑
j 6=k

apjxj) ≤
1

aqk
(bq −

∑
j 6=k

aqjxj).

As this is satisfied by (x1, . . . , xk−1, xk+1, . . . , xn) for all (p, q) ∈ I− × I+, we conclude that

max
p∈I−

 1

apk
(bp −

∑
j 6=k

apjxj)

 ≤ min
q∈I+

 1

aqk
(bq −

∑
j 6=k

aqjxj)

 .
Choose xk to be any value between these maximum and minimum values (inclusive). Then
for all (p, q) ∈ I− × I+,

1

apk
(bp −

∑
j 6=k

apjxj) ≤ xk ≤
1

aqk
(bq −

∑
j 6=k

aqjxj).

Now it is not hard to see that (x1, . . . , xk−1, xk, xk+1, . . . , xn) satisfies all the inequalities in
(I). Therefore (I) is feasible if and only if (II) is feasible.

Observe that each inequality in (II) is a nonnegative combination of inequalities in (I),
so there is a nonnegative matrix Mk such that (II) is expressible as Mk(Ax ≤ b). If we
start with a system Ax ≤ b and eliminate all variables sequentially via nonnegative matrices
M1, . . . ,Mn, then we will arrive at a system of inequalities of the form 0 ≤ b′i, i = 1, . . . ,m′.
This system is expressible as M(Ax ≤ b), where M = Mn · · ·M1. If no b′i is negative, then
the final system is feasible and we can work backwards to obtain a feasible solution to the
original system. If b′i is negative for some i, then let yT = M i (the ith row of M), and we
have a nonnegative vector y such that yTA = OT and yT b < 0.

This establishes a Theorem of the Alternatives for linear inequalities:
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Theorem 2.2 Either the system
(I) Ax ≤ b

has a solution, or the system

(II)
yTA = OT

yT b < 0
y ≥ O

has a solution, but not both.

Note that the “not both” part is the easiest to verify. Otherwise, we would have a feasible
x and y satisfying

0 = OTx = (yTA)x = yT (Ax) ≤ yT b < 0,

which is impossible.
As a consequence of this theorem, we have a good characterization for the question: Is

the system (I) feasible? If the answer is yes, we can prove it by exhibiting any particular
solution to (I). If the answer is no, we can prove it by exhibiting any particular solution to
(II).

2.6 More Alternatives

There are many Theorems of the Alternatives, and we shall encounter more later. Most of
the others can be derived from the one of the previous section and each other. For example,

Theorem 2.3 Either the system

(I)
Ax ≤ b
x ≥ O

has a solution, or the system

(II)
yTA ≥ OT

yT b < 0
y ≥ O

has a solution, but not both.

Proof. System (I) is feasible if and only if the following system is feasible:

(I ′)

[
A
−I

]
x ≤

[
b
O

]
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System (II) is feasible if and only if the following system is feasible:

(II ′)

[
yT wT

] [ A
−I

]
= OT

[
yT wT

] [ b
O

]
< 0[

yT wT
]
≥
[
OT OT

]
Equivalently,

yTA− wT = OT

yT b < O
y,w ≥ O

Now apply Theorem 2.2 to the pair (I ′), (II ′). 2

2.7 Exercises: Systems of Linear Inequalities

Exercise 2.4 Discuss the consequences of having one or more of I−, I+, or I0 being empty
during the process of Fourier-Motzkin elimination. Does this create any problems? 2

Exercise 2.5 Fourier-Motzkin elimination shows how we can start with a system of linear
inequalities with n variables and obtain a system with n − 1 variables. Explain why the
set of all feasible solutions of the second system is a projection of the set of all feasible
solutions of the first system. Consider a few examples where n = 3 and explain how you can
classify the inequalities into types I−, I+, and I0 geometrically (think about eliminating the
third coordinate). Explain geometrically where the new inequalities in the second system
are coming from. 2

Exercise 2.6 Consider a given system of linear constraints. A subset of these constraints
is called irredundant if it describes the same feasible region as the given system and no
constraint can be dropped from this subset without increasing the set of feasible solutions.

Find an example of a system Ax ≤ b with three variables such that when x3, say, is
eliminated, the resulting system has a larger irredundant subset than the original system.
That is to say, the feasible set of the resulting system requires more inequalities to describe
than the feasible set of the original system. Hint: Think geometrically. Can you find such
an example where the original system has two variables? 2
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Exercise 2.7 Use Fourier-Motzkin elimination to graph the set of solutions to the following
system:

+x1 + x2 + x3 ≤ 1
+x1 + x2 − x3 ≤ 1
+x1 − x2 + x3 ≤ 1
+x1 − x2 − x3 ≤ 1
−x1 + x2 + x3 ≤ 1
−x1 + x2 − x3 ≤ 1
−x1 − x2 + x3 ≤ 1
−x1 − x2 − x3 ≤ 1

What is this geometrical object called? 2

Exercise 2.8 Prove the following Theorem of the Alternatives: Either the system

Ax ≥ b

has a solution, or the system
yTA = OT

yT b > 0
y ≥ O

has a solution, but not both. 2

Exercise 2.9 Prove the following Theorem of the Alternatives: Either the system

Ax ≥ b
x ≥ O

has a solution, or the system
yTA ≤ OT

yT b > 0
y ≥ O

has a solution, but not both. 2

Exercise 2.10 Prove or disprove: The system

(I) Ax = b

has a solution if and only if each of the following systems has a solution:

(I ′) Ax ≤ b (I ′′) Ax ≥ b

2
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Exercise 2.11 (The Farkas Lemma). Derive and prove a Theorem of the Alternatives for
the following system:

Ax = b
x ≥ O

Give a geometric interpretation of this theorem when A has two rows. When A has three
rows. 2

Exercise 2.12 Give geometric interpretations to other Theorems of the Alternatives that
we have discussed. 2

Exercise 2.13 Derive and prove a Theorem of the Alternatives for the system

n∑
j=1

aijxj ≤ bi, i ∈ I1

n∑
j=1

aijxj = bi, i ∈ I2

xj ≥ 0, j ∈ J1

xj unrestricted, j ∈ J2

where (I1, I2) is a partition of {1, . . . ,m} and (J1, J2) is a partition of {1, . . . , n}. 2

Exercise 2.14 Derive and prove a Theorem of the Alternatives for the system

Ax < b.

2
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3 Faces of Polytopes

3.1 More on Vertices

For a polytope P , let vertP denote its set of vertices.

Proposition 3.1 Suppose P = {x ∈ Rn : Ax ≤ b} is a polyhedron and x ∈ P . Then x is
a vertex of P if and only if the set of normal vectors of the binding inequalities for x spans
Rn (i.e., span {ai : ai

T
x = bi} = Rn, where ai denotes row i of A).

Solution: The normal vectors of the inequalities are precisely the rows of A. Let A1 be
the submatrix corresponding to the binding inequalities for x. Note that A1 has n columns.
Then x is a vertex iff the nullspace of A1 has dimension 0 iff the columns of A1 are linearly
independent iff the column rank of A1 equals n iff the row rank of A1 equals n iff the rows
of A span Rn.

Definition 3.2 Suppose S ⊆ Rn, x ∈ S, and there exists c ∈ Rn such that x is the unique
maximizer of the linear function cTx over S. Then x is called an exposed point of of the set
S.

Proposition 3.3 Every vertex of a polyhedron P is an exposed point.

Proof. Exercise. 2
Solution: Suppose P = {x ∈ Rn : Ax ≤ b}, and x is a vertex of P . Let A1 be the

submatrix of A corresponding to the tight inequalities for x and b1 be the corresponding
right-hand sides. Define cT = eTA1, where e is a vector of 1’s; i.e., cT is obtained by adding
the rows of A1 together. Then cTx = (eTA1)x = eT (A1x) = eT b1. Now suppose x′ is any
point in P . Then cTx′ = (eTA1)x′ = eT (A1x′) ≤ eT b1 with equality if and only if A1x′ = b1.
But this implies that x′ = x, since x is the unique solution to this system.

Lemma 3.4 Suppose P is a polyhedron, c ∈ Rn, and x ∈ P maximizes cTx over P . Assume
that

x =
m∑
j=1

λjv
j,

where v1, . . . , vm are vertices of P and λ1, . . . , λm are all strictly positive positive numbers
summing to 1. Then vj maximizes cTx over P , j = 1, . . . ,m.
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Proof. Exercise. 2
Solution: Let M = cTx. Then cTvj ≤ M , j = 1, . . . ,m, and so λjc

Tvj ≤ λjM . Hence∑m
j=1 λjc

Tvj ≤ ∑m
j=1 λjM = M with equality if and only if cTvj = M for all j = 1, . . . ,m.

Hence
M = cTx

=
n∑
j=1

λjc
Tvj

≤
n∑
j=1

λjM

= M

forces cTvj = M , j = 1, . . . ,m.

Proposition 3.5 Every exposed point of a polytope is a vertex.

Proof. Exercise. 2
Solution: Let x be an exposed point and cTx be a linear function having x as its unique

maximizer. Write x as a convex combination of vertices of P , x =
∑m
j=1 λjv

j. Discarding vj

for which λj = 0, if necessary, we may assume that λj > 0, j = 1, . . . ,m. By Lemma 3.11,
cTx is also maximized at vj, j = 1, . . . ,m. Since x is the unique maximizer, we conclude
that vj = x, j = 1, . . . ,m; in particular, x is a vertex.

Definition 3.6 Suppose S ⊆ Rn and x ∈ S such that x 6∈ conv (S \ {x}). Then x is called
an extreme point of the set S.

Proposition 3.7 Let x be a point in a polytope P . Then x is a vertex if and only if it is an
extreme point.

Proof. Exercise. 2

Exercise 3.8 Give an example of a convex set S and a point x ∈ S such that x is an extreme
point but not an exposed point. 2

Proposition 3.9 Let V be a finite set and P = convV . Then every vertex of P is in V .

Proof. Exercise 2
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Proposition 3.10 Let V be a finite set, P = convV , and v ∈ V . Then v is a vertex of P
if and only if conv(V \ {v}) 6= P .

Proof. Exercise 2

Proposition 3.11 Let P be a polytope, cTx be a linear function, and S be the set of points
maximizing cTx over P . Then S contains at least one vertex of P .

Proof. Exercise 2

3.2 Faces

Definition 3.12 Recall from Exercise 1.11 that every nonempty affine set S is a translate
of some linear space L. The dimension of S is defined to be the dimension of the linear
space L. The empty set is said to have dimension −1. The dimension, dimT , of any subset
T ⊆ Rn is then defined to be the dimension of its affine span.

Definition 3.13 Let P ⊂ Rn be a polytope of dimension d > 0 (a d-polytope), and aTx be a
linear function. If the maximizing set F of aTx over P has dimension j for some 0 ≤ j ≤ d−1,
then F is a proper face of P . If the maximum value of aTx over P is b, then the hyperplane
{x : aTx = b} is a supporting hyperplane for F . (Note that P ⊂ {x : aTx ≤ b}.)

The empty set and P itself are improper faces of P .
If dimF = j then F is called a j-face. Faces of dimension 0, 1, d−2, and d−1 are called

vertices, edges, subfacets or ridges, and facets of P , respectively.

Proposition 3.14 If F is a nonempty face of a polytope P , then F is itself a polytope.

Proof. Exercise. (Just add two inequalities to P .) 2

Proposition 3.15 If F is a proper face of a d-polytope P , then F is a facet if and only if
F contains d affinely independent points.

Proof. Exercise. 2

Proposition 3.16 Let P be a polytope of dimension d in Rd, and F be a proper face of P .
Then F is a facet if and only if has a unique supporting hyperplane.

Proof. Exercise. 2
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Definition 3.17 Let Ax ≤ b be a system of inequalities. Suppose Aix ≤ bi is the ith in-
equality in this system (Ai denotes the ith row of A), and Âx ≤ b̂ is the system of inequalities
resulting from deleting inequality i. If {x : Ax ≤ b} = {x : Âx ≤ b̂}, then inequality i is said
to be (geometrically) redundant ; otherwise, it is (geometrically) irredundant.

Definition 3.18 Let Ax ≤ b be a system of inequalities. Suppose Aix ≤ bi is the ith
inequality in this system, and Âx ≤ b̂ is the system of inequalities resulting from deleting
inequality i. If there exists y ≥ O such that yT Â = Ai and yT b ≤ bi, then inequality i is said
to be (algebraically) redundant ; otherwise, it is (alrebraically) irredundant.

Proposition 3.19 Let P be a polytope of dimension d in Rd. Suppose P is defined by the set
of inequalities P = {x : aiTx ≤ bi, i = 1, . . . ,m}. Let Hi = {x : Aix = bi} for some i. Then
Hi is the supporting hyperplane to a facet of P if and only if inequality i is geometrically
irredundant if and only if inequality i is algebraically irredundant.

Proof. Exercise. (A Theorem of the Alternatives may be helpful.) 2

Proposition 3.20 Let P be a polytope described by the system Ax ≤ b, and F be a facet of
P . Then one of the inequalities of the system Aix ≤ bi provides a supporting hyperplane for
F . That is to say, F maximizes Aix over P , and the maximum value is bi.

Proof. Exercise. 2

Proposition 3.21 Every nonempty polytope has at least one facet.

Proof. Exercise. 2

Proposition 3.22 (A face of a face is a face.) Let P be a polytope, F be a proper face of
P , and G be a proper face of F (regarding F as a polytope). Then G is a face of P .

Proof. Exercise. 2

Proposition 3.23 Let P be a polytope and F be a proper face of P . Then F is the convex
hull of the vertices of P lying in F .

Proof. Exercise. 2

Proposition 3.24 Let P be a polytope. Then the set of faces of P , ordered by inclusion,
forms a graded poset.
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Proof. Exercise. (Try induction, knowing that polytopes have facets.) 2

Proposition 3.25 Let F and G be two proper faces of a polytope P . If F ∩ G 6= ∅, then
F ∩G is a face of P , and hence is the greatest lower bound of F and G in the face poset.

Proof. Exercise. (Add together the linear functions describing F and G.) 2

Proposition 3.26 Let F and G be two proper faces of a polytope P . Then F and G have
a least upper bound in the face poset.

Proof. Exercise. (Take the intersection of all faces containing both F and G.) 2

Theorem 3.27 The poset of faces of a polytope P is a lattice.

Proof. Exercise. 2

Definition 3.28 The above lattice is the face lattice of P , denoted F(P ).

Proposition 3.29 Every face of a polytope is the intersection of the facets containing it.

Proof. Exercise. 2

Definition 3.30 If two polytopes have isomorphic face lattices, then they are said to be
combinatorially equivalent polytopes.

3.3 Polarity and Duality

Definition 3.31 Let S ⊆ Rd. Then the polar of S (with respect to the origin) is the set
S∗ = {x ∈ Rd : xTy ≤ 1 for all y ∈ S}.

Proposition 3.32 If S ⊆ T , then S∗ ⊇ T ∗.

Proof. Exercise. 2

Proposition 3.33 For positive number r, let Br ⊂ Rd be the closed ball of radius r centered
at the origin. Then B∗r = B1/r.

Proof. Exercise. 2

Corollary 3.34 The set S∗ is bounded if and only if S contains Br for some r > 0. The
set S∗ contains Br for some r > 0 if and only if S is bounded.
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Proof. Exercise. 2

Theorem 3.35 Let P ⊂ Rd be a polytope and p ∈ Rd. Then either p is in P , or else there
is a hyperplane H such that P is in one closed halfspace associated with H and p is in the
opposite open halfspace.

Proof. Suppose P = convV where V = {v1, . . . , vn} ⊂ Rd. We are going to use the Farkas
Lemma, Exercise 2.11, which states that either the system

Ax = b
x ≥ O

has a solution, or else the system
yTA ≥ OT

yT b < 0

has a solution, but not both.
Construct the matrix whose columns are the points in V , and then append a row of ones:

A =

[
v1 · · · vn

1 · · · 1

]
.

Let b be the vector

b =

[
p
1

]
.

Then p ∈ P if and only if the system

Ax = b
x ≥ O

has a solution. The alternative system is:

[
yT , y0

] [ v1 · · · vn

1 · · · 1

]
≥ OT

yTp+ y0 < 0

This system is equivalent to yTvi ≥ −y0 for all i and yTp < −y0. Then for any point x in
convV it is easy to check that yTx ≤ −y0; just write x as a particular convex combination
of points in V . Taking H to be the hyperplane {x : yTx = −y0}, this is equivalent to convV
lying in one of the closed halfspaces associated with H and p lying in the opposite open
halfspace. 2

33



Theorem 3.36 Let P ⊂ Rd be a d-polytope containing the origin in its interior. Then
P ∗∗ = P .

Proof. First, assume ŷ ∈ P . For each x ∈ P ∗ we have xTy ≤ 1 for all y ∈ P . Thus ŷTx ≤ 1
for all x ∈ P ∗. Hence y ∈ P ∗∗.

Now assume y ∈ P ∗∗. Assume that y 6∈ P . Then by Theorem 3.35 there is a hyperplane
H such that P lies in one of the closed halfspaces associated with H and y lies in the
opposite open halfspace. Knowing that O is in the interior of P , by rescaling the equation
of the hyperplane if necessary we may asssume there is a vector c such that all points x in P
satisfy cTx ≤ 1 but cTy > 1. Hence c ∈ P ∗ and further y 6∈ P ∗∗. This contradiction implies
that y ∈ P . 2

Proposition 3.37 Let P ⊂ Rd be a d-polytope containing the origin in its interior. Then
P ∗ = {xTy ≤ 1 for all y ∈ vertP}.

Proof. Let y ∈ P . Write y as a convex combination of the vertices of P . Show that the
P ∗ inequality coming from y is an algebraic consequence of the P ∗ inequalities coming from
the vertices of P . 2

Corollary 3.38 Let P ⊂ Rd be a d-polytope containing the origin in its interior. Then P ∗

is a d-polytope.

Proof. Exercise. 2

Theorem 3.39 Let P ⊂ Rd be a d-polytope containing the origin in its interior. Then the
face lattice F(P ∗) is anti-isomorphic to the face lattice F(P ). That is to say, there is an
inclusion-reversing bijection between the faces of P ∗ and the faces of P , matching j-faces F ∗

of P ∗ with (d− j − 1)-faces F of P , j = −1, . . . , d.

Proof. Key idea: For each face F of P , consider the points in P ∗ that also satisfy the
equations {x : xTy = 1 for all y ∈ F}. This will be the desired face F ∗ of P ∗. You can start
with the observation that a point v in P is the convex combination of a set {v1, . . . , vn} of
vertices of P if and only if the inequality xTv ≤ 1 is the same convex combination of the
inequalities xTvi ≤ 1. Then use Propositions 3.23 and 3.29. 2

Definition 3.40 P ∗ is called the polar dual polytope to P with respect to O. Any polytope
Q combinatorially equivalent to P ∗ is called a dual of P . If F(P ) ∼= F(P ∗), then P is said
to be self dual.
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Proposition 3.41 Any nonempty interval in the face lattice of a polytope P is itself iso-
morphic to the face lattice of some polytope.

Proof. Let [X, Y ] be an interval in the face lattice of a polytope Q. Call this a lower
interval if X = ∅ and an upper interval if Y = Q. Because Y is itself a polytope, lower
intervals are polytopal (isomorphic to the face lattice of some polytope; in this case, Y ).

Now consider any interval I = [F,G] in F(P ). Then I is an upper interval of the
polytopal interval [∅, G] = F(G). So I is anti-isomorphic to a lower interval of F(G∗), which
is polytopal. Thus I is anti-isomorphic to F(H) for some polytope H, and hence isomorphic
to F(H∗). 2

Definition 3.42 A simplex is the convex hull of a set of affinely independent points. A
j-simplex is a j-dimensional simplex, hence the convex hull of j + 1 affinely independent
points.

Exercise 3.43 Let V = {v1, . . . , vd+1} be a set of affinely independent points, and let
P = convV be a d-simplex. Prove that convS is a face of P for every subset of S of P .

Exercise 3.44 Prove that every simplex is self-dual.

Definition 3.45 A d-polytope is simplicial if every proper face is a simplex; equivalently,
every facet contains exactly d vertices. A d-polytope is simple if every vertex is contained
in exactly d edges. (Thus, duals of simplicial polytopes are simplicial, and vice versa.)
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4 Some Polytopes

4.1 Regular and Semiregular Polytopes

Definition 4.1 A d-dimensional simplex or d-simplex is the convex hull of d + 1 affinely
independent points.

The d-cube is conv {(±1,±1, . . . ,±1)} ⊂ Rd, where the signs are chosen independently
(or any polytope obtained from this one by applying compositions of isometries and scalings).

The d-cross-polytope is conv {±e1, . . . ,±ed} ⊂ Rd, where e1, . . . , ed are the standard unit
vectors in Rd (or any polytope obtained from this one by applying compositions of isometries
and scalings).

It turns out that the d-cube and the d-cross-polytope, with the coordinates defined above,
are polar to each other.

Definition 4.2 An isometry is a composition of reflections through hyperplanes. A sym-
metry of a polytope is an isometry that maps the polytope to itself. Note that the set of
symmetries of a given polytope forms a group.

A full flag of a d-polytope is a chain of faces F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd−1, where each Fi
is an i-dimensional face (i-face), i = 0, . . . , d− 1.

A polytope is regular if its group of symmetries is full flag transitive. That is to say,
given any two full flags, F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd−1 and F ′0 ⊂ F ′1 ⊂ F ′2 ⊂ · · · ⊂ F ′d−1, there
is a symmetry of the polytope that maps Fi to F ′i , for all i, i = 0, . . . , d− 1.

Note that if a polytope is regular, then the definition forces each of its faces to be regular
and congruent to each other, and each of its vertex figures to be regular and congruent to
each other. (The vertex figure is the (d − 1)-face resulting from “slicing off” a vertex with
an “appropriate” hyperplane.)

Exercise 4.3 The simplex conv {e1, . . . , ed} ⊂ Rd is a regular (d− 1)-simplex. The d-cube
and the d-cross-polytope are both regular d-polytopes.

The regular convex 2-polytopes are the regular n-gons, n ≥ 3. These are all self-dual.
Schläfli symbols are a notation to help keep track of the structure of regular polyhedra,

starting with ordinary two-dimensional regular polygons. The Schläfli symbol for a polygon
with n sides is simply {n}.

The regular convex 3-polytopes are the five Platonic solids. For a Platonic solid, consist-
ing of regular p-gons with q meeting at each vertex the Schläfli symbol is {p, q}:
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Platonic Solid Schläfli Symbol
Tetrahedron {3, 3}
Cube {4, 3}
Octahedron {3, 4}
Dodecahedron {5, 3}
Icosahedron {3, 5}

Notice that if the Schläfli symbol is {p, q}, then each face is a regular p-gon, and by
truncating any vertex we can get a cross-section that is a regular q-gon. The tetrahedron
is self-dual. The cube and the octahedron are duals of each other, as are the dodecahedron
and the icosahedron.

There are also four nonconvex regular 3-polytopes, known as the Kepler-Poinsot solids:

Kepler-Poinsot Solid Schläfli Symbol
Small Stellated Dodecahedron {5/2, 5}
Great Dodecahedron {5, 5/2}
Great Stellated Dodecahedron {5/2, 3}
Great Icosahedron {3, 5/2}

With a generalization of the definition of dual, the first two polytopes above are duals of
each other; as are the latter two polytopes.

For regular convex 4-polytopes, each of its 3-faces must be regular 3-polytopes and con-
gruent to each other, and each of its vertex figures must regular 3-polytopes and congruent
to each other. It turns out that we can fit three, four, or five regular tetrahedra around a
common edge, but there is no room for a sixth. Similarly we can fit three octahedra, three
cubes, or three dodecahedra around a common edge, but no more. We cannot fit even three
icosahedra around a common edge. These six possibilities can be folded up and extended
in four dimensions to create the complete list of the six convex regular four-dimensional
polytopes:

Polyhedron Faces At Each Edge At Each Vertex Schläfli Symbol
5-cell 5 tetrahedra 3 tetrahedra 4 tetrahedra {3, 3, 3}
8-cell 8 cubes 3 cubes 4 cubes {4, 3, 3}
16-cell 16 tetrahedra 4 tetrahedra 8 tetrahedra {3, 3, 4}
24-cell 24 octahedra 3 octahedra 6 octahedra {3, 4, 3}
120-cell 120 dodecahedra 3 dodecahedra 4 dodecahedra {5, 3, 3}
600-cell 600 tetrahedra 5 tetrahedra 20 tetrahedra {3, 3, 5}

The 5-cell is also known as the regular 4-simplex, the 8-cell as the four-dimensional hypercube,
and the 16-cell as the four-dimensional cross polytope.
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Suppose that the Schläfli symbol of a regular polytope is {p, q, r}. Notice that the first
pair of numbers, {p, q}, describes the 3-face of the polytope. It turns out that the last
pair of numbers, {q, r}, describes what cross-section results when a vertex is truncated, and
that this must also be a regular polytope. This severely limits the possibilities for Schläfli
symbols, keeping the list to a manageable size.

The 5-cell is self-dual. The 8-cell and the 16-cell are duals of each other. The 24-cell is
self-dual. The 120-cell and the 600-cell are duals of each other.

Things get simpler in dimensions beyond 4. For each d ≥ 5 there are only three regular
polytopes: the regular d-simplex, the d-cube, and the d-cross-polytope.

Definition 4.4 A d-polytope is semiregular if every (d − 1)-face is regular (but not all
congruent to each other) and its symmetry group is vertex transitive.

The semiregular convex 3-polytopes are the prisms, the antiprisms, and the 13
Archimedean solids.

Blind and Blind [5] describe a complete classification of semiregular polytopes in higher
dimensions.

4.2 Polytopes in Combinatorial Optimization

The section oversimplifies the area of combinatorial optimization, but nevertheless describes
some important core ideas. A good reference is [29]. The general framework is this: you
have a finite set E = {e1, . . . , en}, a collection S of subsets of E, and a function c : E → R.
For any S ∈ S, define c(S) =

∑
e∈S c(e). The goal is to solve the problem

max{c(S) : S ∈ S}.

(Or it could be a minimization problem.)
For each S ∈ S define its characteristic vector x(S) ∈ RE by

xe(S) =

{
1 if e ∈ S,
0 if e 6∈ S.

If we now take c ∈ RE to be the vector with coordinates ce = c(e), our combinatorial
optimization problem is equivalent to

max{cTx : x = x(S), S ∈ S}.

Define an associated polytope P to be conv {x(S) : S ∈ S}. Consider the problem

max{cTx : x ∈ P}.
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At first glance, this may seem to be a harder problem, since now we are maximizing over
an infinite set. But if we are able to describe P as an H-polytope via a “nice” set of linear
inequalities, then we have a linear programming problem, for which there are “efficient”
algorithms (in terms of the size of the input). Furthermore, linear programming theory
assures us that among the optimal points there is a vertex (see Proposition 3.11), and from
what we know before (Proposition 3.9), that vertex is in V . So by increasing the feasible set
to an infinite set P , we nevertheless arrive at a solution within the original finite set.

Each combinatorial problem is different. Sometimes the associated polytope P is effi-
ciently described by a “small” number of inequalities, and the problem can be solved using
general LP algorithms. Sometimes, even if the number of inequalities is not “small”, effi-
cient algorithms to solve the problem may be developed, often exploiting knowledge of the
combinatorial structure of P . And sometimes the description of the inequalities for P seems
intractable.

Example 4.5 The Bipartite Perfect Matching Polytope. Consider the complete bi-
partite graph Kn,n, with edge set E = {eij : i = 1, . . . , n, j = 1, . . . , n}. A perfect matching
is a collection of n edges that share no endpoints. For example, {e12, e21, e33} is a perfect
matching in K3,3, and its characteristic vector is (x11, x12.x13, x21.x22, x23, x31, x32, x33) =
(0, 1, 0, 0, 1, 0, 0, 0, 1). The polytope P will have n! vertices, but it turns out that P can be
described by 2n equations (one of which happens to be redundant) and n2 inequalities:

n∑
j=1

xij = 1 for all i = 1, . . . , n,

n∑
i=1

xij = 1 for all j = 1, . . . , n,

xij ≥ 0 for all i = 1, . . . , n, j = 1, . . . , n.

There are some very efficient specialized algorithms for solving the maximum weight bipartite
perfect matching problem.

Example 4.6 The Matching Polytope. Consider the complete graph Kn, with vertex
set V = {1, . . . , n} and edge set E of cardinality

(
n
2

)
. A matching is a collection of edges

(possibly empty) such that no two edges share an endpoint. For vertex v and edge e, define

δ(v, e) =

{
1 if v is an endpoint of e,
0 if v is not an endpoint of e.

One set of valid inequalities for the matching polytope is∑
e:δ(v,e)=1

xe ≤ 1 for all v ∈ V,

xe ≥ 0 for all e ∈ E.
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But this does not correctly describe P , even when n = 3 (check this!). For subset T ⊆ V
and edge e ∈ E, define

δ(T, e) =

{
1 if both endpoints of e are in T ,
0 otherwise.

A set of inequalities for the matching polytope is then given by:∑
e:δ(v,e)=1

xe ≤ 1 for all v ∈ V

∑
e:δ(T,e)=1

xe ≤
|T | − 1

2 for all T ⊆ V such that |T | ≥ 3 and odd,

xe ≥ 0 for all e ∈ E.

Even though the number of inequalities is exponential in n, there are efficient specialized
algorithms exploiting this representation that solve the maximum weight matching problem.

Example 4.7 The Matroid Polytope. A matroid is a finite set E and a collection I of
subsets of E (the independent sets) that satisfy the following axioms:

Axiom 0. ∅ ∈ I.

Axiom 1. If S ∈ I and T ⊂ S, then T ∈ I.

Axiom 2. If S ∈ I, T ∈ I, and |T | > |S|, then there is some element e ∈ T \ S
such that S ∪ {e} ∈ I.

One example of a matroid is the graphic matroid, in which E is the set of edges of a given
graph, and S ∈ I if S is a subset of edges containing no cycle. Another is the linear matroid ,
in which E is the index set of the columns of a given matrix A over some field, and S ∈ I if
S is a subset of columns of A that are linearly independent. It turns out that every graphic
matroid is a linear matroid, but there exist matroids that are not linear matroids.

For S ⊆ E, define the rank of S, rankS, to be max{|T | : T ∈ I and T ⊆ S}. A
description of the matroid polytope is given by:∑

e∈S
xe ≤ rankS, for all S ⊂ E,

xe ≥ 0, for all e ∈ E.

The maximum weight independent set in a matroid can be found efficiently using the Greedy
Algorithm.
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Example 4.8 The Dipath Polytope. Given a directed graphG and distinguished vertices
s 6= t, let E be its set of edges, and S be subsets of edges corresponding to directed paths
from s to t, with no repeated vertices. For vertex v and directed edge e, define

δ+(v, e) =

{
1 if e is directed out of v,
0 otherwise.

and

δ−(v, e) =

{
1 if e is directed into v,
0 otherwise.

Some valid constraints for the dipath polytope are:

∑
e:δ+(v,e)=1

xe −
∑

e:δ−(v,e)=1

=


1 if v = s,
−1 if v = t,
0 if v 6= s, t

xe ≥ 0 for all e ∈ E

But this is not a complete set of constraints—determining the complete set is probably
an intractable problem. Nevertheless, there are very efficient algorithms for the minimum
weight dipath problem when the function c is nonnegative, such as Dijkstra’s Algorithm.

Example 4.9 The Traveling Salesman Polytope. Given a complete directed graph
Kn, let E be its set of edges, and S be subsets of edges corresponding to directed cycles of
length n (passing through every vertex). These are directed Hamilton cycles. Some valid
constraints for the dipath polytope are:∑

e:δ+(v,e)=1

xe = 1 for all vertices v,∑
e:δ−(v,e)=1

xe = 1 for all vertices v,

xe ≥ 0 for all e ∈ E.

Again, this is not a complete set of constraints and determining the complete set is probably
an intractable problem. There are no known efficient algorithms for finding a maximum or
minimum weight directed Hamilton cycle.
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5 Representing Polytopes

5.1 Schlegel Diagrams

A Schlegel diagram provides a convenient way to represent a p-polytope in d−1 dimensions,
most often useful when d = 4 or d = 3. Let P be a d-polytope, and F be a facet of P . Choose
a point p 6∈ P “sufficiently close” to a point in the relative interior of F . Project each face
G of P using central projection onto F in the direction of p. The resulting decomposition of
F into polyhedra is a Schlegel diagram of P with respect to F and p.

5.2 Gale Transforms and Diagrams

Let V = {v1, . . . , vn} be a finite subset of Rd and P = convV . Assume that dimP = d. Let
A be the (d+ 1)× n matrix

A =

[
v1 · · · vn

1 · · · 1

]
.

Exercise 5.1 Prove that rankA = d+ 1.

Now find a basis for the nullspace of A, and list these n − d − 1 basis elements as the
rows of an (n − d − 1) × n matrix A. Label the columns of this matrix v1, . . . , vn. Then
{v1, . . . , vn} ⊂ Rn−d−1 is a Gale transform of V .

Exercise 5.2 Prove that v1 + · · ·+ vn = O.

Theorem 5.3 Let S ⊂ {1, . . . , n}. Then the set {vi : i ∈ S} is V ∩F for some face F of P
if and only if the set conv {vi : i 6∈ S} contains O in its relative interior; equivalently, if and
only if O is a positive linear combination of the points in {vi : i 6∈ S}.

Proof. Use the criterion that S is the set of vertices of a face if and only if there is a
hyperplane H such that S lies in H and all of the other vertices in V lie in one of the open
halfspaces associated with H. 2

A Gale diagram of P is a set V = {v1
, . . . , v

n} ⊂ Rn−d−1 that is combinatorially equiva-
lent to V , in the sense that for every subset T ⊂ {1, . . . , n}, O is in the relative interior of
conv {vi : i ∈ T} if and only if O is in the relative interior of conv {vi : i ∈ T}. For example,
one way to get a Gale diagram from a Gale transform is to independently scale each of the
points by positive amounts.
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Exercise 5.4 How can you tell from a Gale diagram whether or not every point in V is a
vertex of P?

Exercise 5.5 Assuming V is the vertex set of P , how can you tell from a Gale diagram
whether or not P is simplicial?

Exercise 5.6 Suppose V has exactly d + 2 points. What does a Gale transform tell you
about Radon partitions (see Theorem 1.26? What if V has more than d+ 2 points?

Exercise 5.7 Determine a formula for the number of different combinatorial types of (un-
labeled) d-polytopes with exactly d+ 2 vertices.

Exercise 5.8 Determine a formula for the number of different combinatorial types of (un-
labeled) simplicial d-polytopes with exactly d+ 3 vertices.

Remark 5.9 Given any set V = {v1, . . . , vn} ⊂ Rn−d−1 such that O is in the interior of the
convex hull of V , it may be regarded as the Gale diagram of some d-polytope P . First find
positive numbers λ1, . . . , λn such that λ1v

1 + · · ·λnvn = O. Construct the matrix

A =
[
λ1v

1 · · · λnv
n
]
.

Then the rank of A equals n− d− 1 and you can find a d× n matrix A of the form

A =

[
v1 · · · vn

1 · · · 1

]

such that the rows of A form a basis for the nullspace of A. Then define V = {v1, . . . , vn}
and P = convV .
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6 Euler’s Relation

Recall that F(P ) denotes the set of all faces of a polytope P , both proper and improper. Let
F(bdP ) := F(P )\{P}. We denote the number of j-dimensional faces (j-faces) of P by fj(P )
(or simply fj when the polyhedron is clear) and call f(P ) := (f0(P ), f1(P ), . . . , fd−1(P )) the
f -vector of P . The empty set is the unique face of dimension −1 and P is the unique face
of dimension d, so f−1(P ) = 1 and fd(P ) = 1.

A very big problem is to understand/describe f(Pd) := {f(P ) : P is a d-polytope}!

6.1 Euler’s Relation for 3-Polytopes

By now you have all probably encountered the formula “V − E + F = 2” for convex three-
dimensional polytopes.

Theorem 6.1 (Euler’s Relation) If P is a 3-polytope, then f0 − f1 + f2 = 2.

For historical notes, see [3], [13]. [16], and [22]. Before Euler stated his formula, Descartes
discovered a theorem from which Euler’s formula could be deduced, but it does not appear
that Descartes explicitly did so.

Proof by “immersion”. Position the polytope P in a container so that no two vertices
are at the same vertical level (have the same z-coordinate). Fill the container with water.
Count the contribution of a face to the expression f0 − f1 + f2 at the moment when it is
submerged. At the very beginning, only the bottom vertex becomes submerged, so at this
point f0−f1 +f2 = 1−0+0 = 1. When a later vertex v (but not the top one) is submerged,
that vertex now contributes, as do the downward edges incident to v (let’s say there are k
of them) and the k − 1 facets between these k-edges. So the contribution of these newly
submerged faces to f0 − f1 + f2 is 1 − k + (k − 1) = 0. Thus f0 − f1 + f2 remains equal
to 1. But when the top vertex v is submerged, all of its incident edges (let’s say there are
k of them) are submerged, as well as k incident facets. The contribution of these newly
submerged faces to f0 − f1 + f2 is 1− k + k = 1, so at the end f0 − f1 + f2 = 2. 2

Exercise 6.2 What happens when you apply this proof technique to a “polyhedral
torus”? 2

Proof by “projection and destruction”. Choose a facet F of P . Find a point q
outside of the polytope P but “sufficiently close” to a point in the relative interior of F .
Make a Schlegel diagram of P by projecting the vertices and the edges of P onto F using
central projection towards q. Now you have a connected, planar graph G in the plane. There
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is a bijection between the regions of H determined by G, and the facets of P . Let f0, f1,
and f2 be the number of vertices, edges, and regions, respectively, of G. Find a cycle in G,
if there is one (a sequence of vertices and edges v0e1v1e2v2 · · · vkek where k > 2, the vi are
distinct, and ei joins vi−1 to vi, i = 1, . . . , k). Delete one edge of the cycle. Then f1 and f2

each drop by one (why?). So f0 − f1 + f2 does not change. Repeat this step until no cycles
remain. Now find a vertex incident to precisely one of the remaining edges (why does the
nonexistence of cycles imply that such a vertex exists?). Delete this vertex and this edge.
Then f0 and f1 each drop by one. So f0 − f1 + f2 does not change. Repeat this step until
the graph is reduced to a single vertex and a single region with no edges (this is where the
connectivity of G comes into play). At this stage f0 − f1 + f2 = 1 − 0 + 1 = 2, so it must
have been equal to two at the start as well. 2

This proof applies to arbitrary connected planar graphs.

Proof by “shelling”. Build up the boundary of the polytope facet by facet, keeping
track of f0 − f1 + f2 as you go. Be sure each new facet F (except the last) meets the union
of the previous ones in a single path of vertices and edges along the boundary of F . Suppose
the first facet has k edges. Then at this point f0 − f1 + f2 = k − k + 1 = 1. Suppose a later
facet F (but not the last) has k edges but meets the previous facets along a path with `
edges and `+1 vertices, ` < k. Then F as a whole increases f0−f1 +f2 by k−k+1 = 1, but
we must subtract off the contribution by the vertices and edges in the intersection, which is
(`+ 1)− ` = 1. So there is no net change to f0 − f1 + f2. The very last facet increases only
f2 (by one), giving the final result f0 − f1 + f2 = 2. 2

At this point, however, it is not obvious that every 3-polytope can be built up in such a
way, so this proof requires more work to make it secure.

Proof by algebra. Let Fj denote the set of all j-faces of P , j = −1, 0, 1, 2. For

j = −1, 0, 1, 2 define vector spaces Xj = Z
Fj

2 over Z2 with coordinates indexed by the j-
faces. If you like, you may think of a bijection between the vectors of Xj and the subsets of
Fj. In particular, dimXj = fj. For j = 0, 1, 2 we are going to define a linear boundary map
∂j : Xj → Xj−1. Assume x = (xF )F∈Fj

. Let ∂j(x) = (yG)G∈Fj−1
be defined by

yG =
∑

F :G⊂F
xF .

Define also ∂−1 : X−1 → 0 by ∂−1(x) = 0, and ∂3 : 0 → X2 by ∂3(0) = 0. You should
be able to verify that ∂j−1∂j(x) equals zero for all x ∈ Xj, j = 0, 1, 2 (why?). Set Bj =
∂j+1(Xj+1) and Cj = ker ∂j, j = −1, 0, 1, 2. By the previous observation, Bj ⊆ Cj. The
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subspaces Bj are called j-boundaries and the subspaces Cj are called j-cycles. Note that
dimXj = dimBj−1 + dimCj, j = 0, 1, 2. Finally define the quotient spaces Hj = Cj/Bj,
j = −1, . . . , 2. (These are the (reduced) homology spaces of the boundary complex of P over
Z2.) Then dimHj = dimCj − dimBj. It turns out that Bj actually equals Cj, j = −1, 0, 1
(prove this!), so for these values of j we have dimBj = dimCj and dimHj = 0. Observe
that dimB2 = 0 and dimC2 = 1 (why?). So dimH2 = 1, and we have

1 = dimH2 − dimH1 + dimH0 − dimH−1

= (dimC2 − dimB2)− (dimC1 − dimB1) + (dimC0 − dimB0)− (dimC−1 − dimB−1)
= − dimB2 + (dimC2 + dimB1)− (dimC1 + dimB0) + (dimC0 + dimB−1)− dimC−1

= 0 + dimX2 − dimX1 + dimX0 − 1
= f2 − f1 + f0 − 1.

This implies 2 = f2 − f1 + f0. 2

Exercise 6.3 If P is a 3-polytope, prove that ∂j−1∂j(x) = 0 equals zero for all x ∈ Xj,
j = 0, 1, 2. 2

Exercise 6.4 Begin thinking about which of the above proofs might generalize to higher
dimensions, and how. 2

6.2 Some Consequences of Euler’s Relation for 3-Polytopes

Exercise 6.5 For a 3-polytope P , let pi denote the number of faces that have i vertices (and
hence i edges), i = 3, 4, 5, . . .. (The vector (p3, p4, p5, . . .) is called the p-vector of P .) Let qi
denote the number of vertices at which i faces (and hence i edges) meet, i = 3, 4, 5, . . ..

1. Prove

(a) 3p3 + 4p4 + 5p5 + 6p6 + · · · = 2f1.

(b) 2f1 ≥ 3f2.

(c) 3q3 + 4q4 + 5q5 + 6q6 + · · · = 2f1.

(d) 2f1 ≥ 3f0.

(e) f2 ≤ 2f0 − 4.

(f) f2 ≥ 1
2
f0 + 2.

2. Label the horizontal axis in a coordinate system f0 and the vertical axis f2. Graph the
region for which the above two inequalities (1e) and (1f) hold.
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3. Consider all integral points (f0, f2) lying in the above region. Can you find a formula
for the number of different possible values of integral values f2 for a given integral value
of f0?

4. Prove that no 3-polytope has exactly 7 edges.

5. Think of ways to construct 3-polytopes that achieve each possible integral point (f0, f2)
in the region.

6. Prove that f0 − f1 + f2 = 2 is the unique linear equation (up to nonzero multiple)
satisfied by the set of f -vectors of all 3-polytopes.

7. Characterization of f(P3). Describe necessary and sufficient conditions for
(f0, f1, f2) to be the f -vector of a 3-polytope.

2

Exercise 6.6

1. Prove the following inequalities for 3-polytopes.

(a) 6 ≤ 3f0 − f1.

(b) 6 ≤ 3f2 − f1.

(c) 12 ≤ 3p3 + 2p4 + 1p5 + 0p6 − 1p7 − 2p8 − · · ·.

2. Prove that every 3-polytope must have at least one face that is a triangle, quadrilateral,
or pentagon.

3. Prove that every 3-polytope must have at least one vertex at which exactly 3, 4, or 5
edges meet.

4. A truncated icosahedron (soccer ball) is an example of a 3-polytope such that (1) each
face is a pentagon or a hexagon, and (2) exactly three faces meet at each vertex. Prove
that any 3-polytope with these two properties must have exactly 12 pentagons.

2

Exercise 6.7 Suppose P is a 3-polytope with the property that each facet has exactly n
edges and exactly m edges meet at each vertex. (The Platonic (or regular) solids satisfy
these criteria.) List all the possible pairs (m,n). 2
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Exercise 6.8 Suppose P is a 3-polytope with the property that exactly ak k-gons meet at
each vertex, k = 3, . . . , `. (The semiregular solids, including the Archimedean solids, satisfy
this criterion.) Determine f0, f1, and f2 in terms of a3, . . . , a`. 2

Exercise 6.9 Recall from plane geometry that for any polygon, the sum of the exterior
angles (the amount by which the interior angle falls short of π) always equals 2π. There is
a similar formula for 3-polytopes. For each vertex calculate by how much the sum of the
interior angles of the polygons meeting there falls short of 2π. Then sum these shortfalls
over all the vertices. Prove that this sum equals 4π. 2

6.3 Euler’s Relation in Higher Dimensions

Grünbaum [16] credits Schläfli [40] for the discovery of Euler’s Relation for d-polytopes in
1852 (though published in 1902). He explains that there were many other discoveries of
the relation in the 1880’s, but these relied upon the unproven assumption that the bound-
ary complexes of polytopes were suitably “shellable.” The first real proof seems to be by
Poincaré [35, 36] in 1899 during the time when the Euler characteristic of manifolds was un-
der development. Perhaps the first completely elementary proof without algebraic overtones
is that of Grünbaum [16]. The proof that we give below is a bit different, but still a sibling
of Grünbaum’s proof.

Theorem 6.10 (Euler-Poincaré Relation) If P is a d-polytope, then

χ(P ) :=
d−1∑
j=0

(−1)jfj(P ) = 1− (−1)d.

The subset {(f0, . . . , fd−1) ∈ Rd :
∑d−1
j=0(−1)jfj = 1 − (−1)d} is sometimes called the

Euler hyperplane.
Two alternative expressions of this result are

χ̂(P ) :=
d−1∑
j=−1

(−1)d−j−1fj(P ) = 1,

and
d∑

j=−1

(−1)jfj(P ) = 0.

Proof. Assume that P is a subset of Rd. Choose a vector c ∈ Rd such that cTv is different
for each vertex v of P (why can this be done?). Order the vertices of P , v1, . . . , vn, by

48



increasing value of cTvi. For k = 1, . . . , n, define Sk(P ) := {F ⊂ P : F is a face of P such
that cTx ≤ cTvk for all x ∈ F}. (Clearly Sn(P ) = F(bdP ), the set of all faces of P .) We
will prove that

χ̂(Sk(P )) =

{
0, k = 1, . . . , n− 1,
1, k = n.

Our proof is by double induction on d and n. It is easy to check its validity for d = 0 and
d = 1, so fix d ≥ 2. When k = 1, S1(P ) consists of the empty set and v1, so χ̂(S1(P )) = 0.
Assume k ≥ 2. Then

χ̂(Sk(P )) = χ̂(Sk−1(P )) + χ̂(Sk(P ) \ Sk−1(P ))
= χ̂(Sk(P ) \ Sk−1(P )).

Let Q be a vertex figure of P at vk. This is constructed by choosing a hyperplane H for
which vk and the set {v1, . . . , vn} \ vk are in opposite open halfspaces associated with H.
Then define Q := P ∩ H. Let m := f0(Q). It is a fact that Q is a (d − 1)-polytope, and
there is a bijection between the j-faces F of P containing vk and the (j − 1)-faces F ∩H of
Q. Moreover, the faces in the set Sk(P ) \ Sk−1(P ) correspond to the faces in S`(Q), defined
using the same vector c, for some ` ≤ m, with ` < m if and only if k < n. (You may need
to perturb H slightly to ensure that cTx is different for each vertex of Q.) Therefore

χ̂(Sk(P ) \ Sk−1(P )) =
d−1∑
j=−1

(−1)d−j−1fj(Sk(P ) \ Sk−1(P ))

=
d−1∑
j=0

(−1)d−j−1fj(Sk(P ) \ Sk−1(P ))

=
d−1∑
j=0

(−1)d−j−1fj−1(S`(Q))

=
d−2∑
j=−1

(−1)d−j−2fj(S`(Q))

= χ̂(S`(Q))

=

{
0, ` < m,
1, ` = m.

2

If we are looking for linear equations satisfied by members of f(Pd), we are done:
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Theorem 6.11 Up to scalar multiple, the relation χ(P ) = 1 − (−1)d is the unique linear
equation satisfied by all (f0, . . . , fd−1) ∈ f(Pd), d ≥ 1.

Proof. We prove this by induction on d. For d = 1, the relation states f0 = 2, and the
result is clear. Assume d ≥ 2. Suppose

∑d−1
j=0 ajfj = b is satisfied by all f ∈ f(Pd), where

not all aj are zero. Let Q be any (d − 1)-polytope and suppose f(Q) = (f̂0, . . . , f̂d−2). Let
P1 be a pyramid over Q and P2 be a bipyramid over Q. Such polytopes are created by first
realizing Q as a subset of Rd. The pyramid P1 is constructed by taking the convex hull of
Q and any particular point not in the affine span of Q. The bipyramid P2 is constructed by
taking the convex hull of Q and any particular line segment L such that the intersection of
Q and L is a point in the relative interiors of both Q and L. It is a fact that

f(P1) = (f̂0 + 1, f̂1 + f̂0, f̂2 + f̂1, . . . , f̂d−2 + f̂d−3, 1 + f̂d−2),

f(P2) = (f̂0 + 2, f̂1 + 2f̂0, f̂2 + 2f̂1, . . . , f̂d−2 + 2f̂d−3, 2f̂d−2).

Both P1 and P2 are d-polytopes, so

d−1∑
j=0

ajfj(P1) = b,

d−1∑
j=0

ajfj(P2) = b.

Subtracting the first equation from the second yields

a0 + a1f̂0 + a2f̂1 + a3f̂2 + · · ·+ ad−2f̂d−3 + ad−1(f̂d−2 − 1) = 0

and so
a1f̂0 + a2f̂1 + a3f̂2 + · · ·+ ad−2f̂d−3 + ad−1f̂d−2 = ad−1 − a0

for all f̂ ∈ f(Pd−1). This relation cannot be the trivial relation; otherwise a1 = · · · = ad−1 =
0 and ad−1 − a0 = 0, which forces aj = 0 for all j. So by induction this relation must be a
nonzero scalar multiple of

f̂0 − f̂1 + f̂2 − · · ·+ (−1)d−2f̂d−2 = 1− (−1)d−1.

Thus a1 6= 0, aj = (−1)j−1a1, j = 1, . . . , d− 1, and ad−1 − a0 = (1− (−1)d−1)a1, so

a0 = ad−1 − (1− (−1)d−1)a1

= (−1)d−2a1 − a1 + (−1)d−1a1

= −a1.

From this we see that aj = (−1)ja0, j = 0, . . . , d− 1, which in turn forces b = (1− (−1)d)a0.
Therefore

∑d−1
j=1 ajfj = b is a nonzero scalar multiple of Euler’s Relation. 2
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6.4 Gram’s Theorem

We now turn to an interesting geometric relative of Euler’s Relation. Gram’s Theorem is
described in terms of solid angle measurement in [16]; in which the history of the theorem
and its relatives is discussed (Gram’s contribution is for d = 3). The form we give here,
and its consequence for volume computation, is summarized from Lawrence [23]. See also
[24, 25].

Suppose P is a d-polytope in Rd. Each facet Fi has a unique supporting hyperplane Hi.
Let H+

i be the closed halfspace associated with Hi containing P .
For every face F , whether proper or not, define

KF :=
⋂

i:F⊆Hi

H+
i .

Note in particular that K∅ = P and KP = Rd. Define the function aF : Rd → R by

aF (x) =

{
1, x ∈ KF ,
0, x 6∈ KF .

Theorem 6.12 If P is a d-polytope, then∑
F :−1≤dimF≤d

(−1)dimFaF (x) = 0 for all x ∈ Rd.

Equivalently, ∑
F :0≤dimF≤d

(−1)dimFaF (x) =

{
1, x ∈ P,
0, x 6∈ P.

The proof that the above sum equals one when x ∈ P follows easily from Euler’s Relation.
The case x 6∈ P is more easily understood after we have discussed shellability. 2
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7 The Dehn-Sommerville Equations

7.1 3-Polytopes

If P is a 3-polytope, then of course f0 − f1 + f2 = 2. But if every facet of P is a triangle,
then we can say more: 3f2 = 2f1. These two equations are linearly independent, and every
equation satisfied by f -vectors of all such 3-polytopes is a consequence of these two.

Exercise 7.1 Prove that the set of f -vectors of 3-polytopes, all of whose facets are triangles,
is {(f0, 3f0 − 6, 2f0 − 4) : f0 ∈ Z, f0 ≥ 4}. 2

What is the situation in higher dimensions?
A d-polytope P is called simplicial if every proper j-face of P is a j-simplex. Equivalently,

it is enough to know that every facet of P is a (d− 1)-simplex.
Simplicial polytopes are dual to simple polytopes, and (a0, . . . , ad−1) is the f -vector of

some simplicial d-polytope if and only if (ad−1, . . . , a0) is the f -vector of some simple d-
polytope (why?). Our goal in this section is to learn more about f(Pds ), the set of f -vectors
of the collection Pds of all simplicial polytopes, but it turns out to be easier to view the
situation from the simple standpoint first.

7.2 Simple Polytopes

Let v be a vertex of a simple d-polytope Q. Let E be the collection of the d edges of Q
containing v. It is a fact that there is a bijection between subsets S of E of cardinality j and
j-faces of Q containing v; namely, that unique face of Q containing v and S, but not E \ S.
(Can you see why this won’t be true in general if Q is not simple?)

Now assume that Q is a simple d-polytope in Rd, and choose a vector c ∈ Rd such that
cTv is different for every vertex v of Q. As in Section 6.3, order the vertices v1, . . . , vn of Q
according to increasing value of cTx, and define the sets Sk := Sk(Q). It is a fact that for
every nonempty face F of Q there is a unique point of F that maximizes cTx over all x ∈ F ,
and that this point is one of the vertices of Q—the unique vertex vk such that F ∈ Sk \Sk−1.
Orient each edge uv of Q in the direction of increasing value of cTx; i.e., so that it is pointing
from vertex u to vertex v if cTu < cTv.

Choose a vertex vk, and assume that there are exactly i edges pointing into vk (so vk has
indegree i and outdegree d− i). By the above observations, the number of j-faces of Sk \Sk−1

equals
(
i
j

)
. Let hci be the number of vertices of Q with indegree i. Then since each j-face of

Q appears exactly once in some Sk \Sk−1 (necessarily for some vertex vk of indegree at least
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i), we see that

fj =
d∑
i=j

(
i

j

)
hci , j = 0, . . . , d. (2)

Exercise 7.2 Define the polynomials

f̂(Q, t) =
d∑
j=0

fjt
j

and

ĥ(Q, t) =
d∑
i=0

hci t
i.

1. Prove f̂(Q, t) = ĥ(Q, t+ 1).

2. Prove ĥ(Q, t) = f̂(Q, t− 1).

3. Conclude

hci =
d∑
j=i

(−1)i+j
(
j

i

)
fj, i = 0, . . . , d. (3)

2

The above exercise proves the surprising fact that the numbers hci are independent of
the choice of c. In particular, h−ci = hci for all i = 0, . . . , d. But the vertices of indegree i
with respect to −c are precisely the vertices of outdegree d− i with respect to −c, hence the
vertices of indegree d− i with respect to c. Therefore, h−ci = hcd−i for all i. Dispensing with
the now superfluous superscript c, we have

hi = hd−i, i = 0, . . . , d, (4)

for every simple d-polytope Q. These are the Dehn-Sommerville Equations for simple poly-
topes. We may, if we wish, drop the superscript in equation (3), and use this formula to
define hi, i = 0, . . . , d, for simple d-polytopes. The vector h := (h0, . . . , hd) is the h-vector
of the simple polytope Q.

Exercise 7.3

1. Calculate the h-vector of a 3-cube.

2. Calculate the f -vector and the h-vector for a d-cube with vertices (±1, . . . ,±1). (The
d-cube is the Cartesian product of the line segment [−1, 1] with itself d-times.) Sug-
gestion: Use induction on d and the fact that every facet of a d-cube is a (d− 1)-cube.

2
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7.3 Simplicial Polytopes

We now return to the simplicial viewpoint. For a simplicial d-polytope P , let Q be a simple
d-polytope dual to P . For i = 0, . . . , d,

hi = hi(Q)

= hd−i(Q)

=
d∑

k=d−i
(−1)d−i+k

(
k

d− i

)
fk(Q)

=
d∑

k=d−i
(−1)d−i+k

(
k

d− i

)
fd−k−1(P ).

Let j = d− k. Then

hi =
i∑

j=0

(−1)i+j
(
d− j
d− i

)
fj−1(P ), i = 0, . . . , d. (5)

We take equation (5) as the definition of hi(P ) := hi, i = 0, . . . , d, and let h(P ) :=
(h0(P ), . . . , hd(P )) be the h-vector of the simplicial polytope P . The following two theorems
follow immediately.

Theorem 7.4 (Dehn-Sommerville Equations) If P is a simplicial d-polytope, then
hi(P ) = hd−i(P ), i = 0, . . . , b(d− 1)/2c.

Theorem 7.5 If P is a simplicial d-polytope, then hi ≥ 0, i = 0, . . . , d.

In Theorem 7.4, bxc is the greatest integer function, defined to be bxc := max{y : y ≤ x
and y is an integer}.

For a simplicial polytope P , define the polynomials

f(P, t) =
d∑
j=0

fj−1t
j

and

h(P, t) =
d∑
i=0

hit
i.
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Exercise 7.6

1. Prove h(P, t) = (1− t)df(P, t
1− t).

2. Prove f(P, t) = (1 + t)dh(P, t
1 + t).

3. Prove

fj−1 =
j∑
i=0

(
d− i
d− j

)
hi, j = 0, . . . , d. (6)

2

Exercise 7.7

1. Find the formulas for h0, h1, and hd in terms of the fj.

2. Find the formulas for f−1, f0, and fd−1 in terms of the hi.

3. Prove that h0 = hd is equivalent to Euler’s Relation for simplicial d-polytopes.

2

Exercise 7.8 Characterize h(P3
s ); i.e., characterize which vectors (h0, h1, h2, h3) are h-

vectors of simplicial 3-polytopes. 2

Exercise 7.9 Show that the number of monomials of degree s in at most r variables is(
r + s− 1

s

)
. 2

Exercise 7.10 Show that the number of monomials of degree s in exactly r variables (i.e.,

each variable appears with positive power) is
(
s− 1
r − 1

)
. 2

Exercise 7.11 Use Exercise 7.9 to show that the coefficient of ts in the expansion of
1

(1− t)r = (1 + t+ t2 + · · ·)r is
(
r + s− 1

s

)
. 2

Exercise 7.12

Prove that f(P, t
1− t) formally expands to the series

∞∑
`=0

H`(P )t` where

H`(P ) =


1, ` = 0,

`−1∑
j=0

fj(P )

(
`− 1

j

)
, ` > 0,

(taking fj(P ) = 0 if j ≥ d). 2
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Exercise 7.13 Prove Stanley’s observation that the f -vector can be derived from the h-
vector by constructing a triangle in a manner similar to Pascal’s triangle, but replacing
the right-hand side of the triangle by the h-vector. The f -vector emerges at the bottom.
Consider the example of the octahedron.

1
1 3

1 4 3
1 5 7 1

1 6 12 8

By subtracting instead of adding, one can convert the f -vector to the h-vector in a similar
way. 2

Exercise 7.14 What are the f -vector and the h-vector of a d-simplex? 2

Exercise 7.15 Let P be a simplicial convex d-polytope and let Q be a simplicial convex
d-polytope obtained by building a shallow pyramid over a single facet of P . Of course,
this increases the number of vertices by one. Show that the h-vector of Q is obtained by
increasing hi(P ) by one, i = 1, . . . , d− 1. 2

Exercise 7.16 A simplicial convex d-polytope is called stacked if it can be obtained from
a d-simplex by repeatedly building shallow pyramids over facets. What do the h-vector and
the f -vector of a stacked d-polytope with n vertices look like? 2

Exercise 7.17 Let P be a d-polytope with n vertices such that fj−1(P ) =
(
n
j

)
, j =

0, . . . , bd/2c. Prove that hi(P ) =
(n− d+ i− 1

i

)
, i = 0, . . . , bd/2c. Suggestion: Consider

the lower powers of t in f(P, t) and h(P, t). 2

Exercise 7.18

1. Suppose P is a simplicial d-polytope and P ′ is a bipyramid over P . What is the
relationship between h(P ) and h(P ′)?

2. Let P1 be any 1-polytope (line segment), and let Pk be a bipyramid over Pk−1, k =
2, 3, . . .. (Such Pk are combinatorially equivalent to d-cross-polytopes, which are dual
to d-cubes.) Find formulas for h(Pk) and f(Pk).

2
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7.4 The Affine Span of f(Pd
s )

For a simplicial d-polytope P , d ≥ 1, consider the equation hi = hd−i. Obviously if i = d− i
then the equation is trivial, so let’s assume that 0 ≤ i ≤ b(d−1)/2c (in particular, d− i > i).
Then, as a linear combination of f−1, . . . , fd−1, hd−i contains the term fd−i−1, whereas hi
does not. So the equation is nontrivial, i = 0, . . . , b(d − 1)/2c. Clearly these equations
form a linearly independent set of b(d − 1)/2c + 1 = b(d + 1)/2c linear equations, so the
dimension of the affine span of f -vectors (f0, . . . , fd−1) of simplicial d-polytopes is at most
d− b(d+ 1)/2c = bd/2c.

Let m = bd/2c. To verify that the dim aff f(Pds ) = m, we need to find a collection of
m + 1 affinely independent f -vectors. (The notation aff denotes affine span.) Fortunately,
there is a class of simplicial d-polytopes, called cyclic polytopes, which accomplishes this.
We’ll study cyclic polytopes a bit later, but for now it suffices to know that fj−1 =

(
n
j

)
,

j = 0, . . . ,m, for cyclic d-polytopes C(n, d) with n vertices.

Exercise 7.19 Prove that the set {f(C(n, d)) : n = d + 1, . . . , d + m + 1} is affinely inde-
pendent. Suggestion: Write these vectors as rows of a matrix, throw away all but the first m
columns, append an initial column of 1’s, and then show that this matrix has full row rank
by subtracting adjacent rows from each other. 2

Theorem 7.20 The dimension of aff f(Pds ) is bd/2c, and aff f(Pds ) = {(f0, . . . , fd−1) : hi =
hd−i, i = 0, . . . , b(d− 1)/2c}.

The Dehn-Sommerville Equations can be expressed directly in terms of the f -vector.
Here is one way (see [16]):

Theorem 7.21 If f ∈ f(Pds ) then

d−1∑
j=k

(−1)j
(
j + 1

k + 1

)
fj = (−1)d−1fk, −1 ≤ k ≤ d− 1.

The dual result for simple polytopes (see [6]) is:

Theorem 7.22 If f = (f0, . . . , fd) is the f -vector of a simple d-polytope, then

i∑
j=0

(−1)j
(
d− j
d− i

)
fj = fi, i = 0, . . . , d.
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7.5 Vertex Figures

Let’s return to a simplicial d-polytope P . Assume that v is a vertex of P , and Q is a
vertex figure of P at v. Define B to be the collection of faces of P that do not contain
v. It is a fact that Q is a simplicial (d − 1)-polytope. In the following formulas we take
f−2(Q) = h−1(Q) = hd(Q) = 0.

Theorem 7.23 Let P , Q, and B be as above. Then

1. fj(P ) = fj(B) + fj−1(Q), j = −1, . . . , d− 1.

2. hi(P ) = hi(B) + hi−1(Q), i = 0, . . . , d.

3. hi(Q)− hi−1(Q) = hi(B)− hd−i(B), i = 0, . . . , d.

Proof.

1. This is clear because every j-face of P either does not contain v, in which case it is a
j-face of B, or else does contain v, in which case it corresponds to a (j − 1)-face of Q.

2. Expressing (1) in terms of polynomials, we get

f(P, t) = f(B, t) + tf(Q, t).

So

(1− t)df(P,
t

1− t
) = (1− t)df(B,

1

1− t
) + (1− t)d t

1− t
f(Q,

t

1− t
),

h(P, t) = h(B, t) + th(Q, t),

and equating coefficients of ti gives (2).

3. The Dehn-Sommerville Equations for P and Q are equivalent to the statements

h(P, t) = tdh(P,
1

t
)

and

h(Q, t) = td−1h(Q,
1

t
).

Therefore

h(B, t)− tdh(B, 1
t
) = h(P, t)− th(Q, t)− tdh(P, 1

t
) + td 1

t
h(Q, 1

t
)

= td−1h(Q, 1
t
)− th(Q, t)

= h(Q, t)− th(Q, t).

Equating coefficients of ti gives (3). 2
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This theorem tells us that the h-vectors, and hence the f -vectors, of both P and Q, are
completely determined by the h-vector, and hence the f -vector, of B. We can use (3) to
iteratively compute h0(Q), h1(Q), h2(Q), . . ., and then determine h(P ) from (2).

If we think of the boundary complex of P as a hollow (d − 1)-dimensional “simplicial
sphere”, then B is a (d− 1)-dimensional “simplicial ball”, and the faces on the “boundary”
of B correspond to the faces of Q. Actually (though I haven’t defined the terms), the Dehn-
Sommerville Equations apply to any simplicial sphere, so this theorem can be generalized to
prove that the f -vector of the boundary of any simplicial ball is completely determined by
the f -vector of the ball itself.

Example 7.24 Suppose P is a simplicial 7-polytope, v is a vertex of P , and B is defined
as above. Assume that

f(B) = (11, 55, 165, 314, 365, 234, 63).

Let’s find f(P ) and f(Q).

f(B, t) = 1 + 11t+ 55t2 + 165t3 + 314t4 + 365t5 + 234t6 + 63t7,

h(B, t) = (1− t)7f(B, t
1− t)

= 1 + 4t+ 10t2 + 20t3 + 19t4 + 7t5 + 2t6.

Set up an “addition” for h(B), h(Q), and h(P ):

h(B)
h(Q)
h(P )

1 4 10 20 19 7 2 0
+ · · · · · · ·
· · · · · · · ·

The missing two rows must each be symmetric, which forces the solution

h(B)
h(Q)
h(P )

1 4 10 20 19 7 2 0
+ 1 3 6 7 6 3 1
1 5 13 26 26 13 5 1

So
h(Q, t) = 1 + 3t+ 6t2 + 7t3 + 6t4 + 3t5 + t6,
h(P, t) = 1 + 5t+ 13t2 + 26t3 + 26t4 + 13t5 + 5t6 + t7.

Using f(Q, t) = (1 + t)6h( t
1 + t) and f(P, t) = (1 + t)7h( t

1 + t), we compute

f(Q) = (9, 36, 81, 108, 81, 27),
f(P ) = (12, 64, 201, 395, 473, 315, 90).

2
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Exercise 7.25 Let B be as in the previous theorem and let intB be the set of faces of
B that do not correspond to faces of Q (are not on the “boundary” of B). Prove that
h(intB) = (hd(B), . . . , h0(B)). 2

Messing around a bit, we can come up with an explicit formula for f(Q) in terms of f(B)
(we omit the proof):

Theorem 7.26 Assume that B and Q are as in the previous theorem. Then

fk(Q) = fk(B) + (−1)d
d−1∑
j=k

(−1)j
(
j + 1

k + 1

)
fj(B), −1 ≤ k ≤ d− 2.

Comparing this to Theorem 7.21, we see that f(Q) measures the deviation of f(B) from
satisfying the Dehn-Sommerville Equations.

It is a fact that every unbounded simple d-polyhedron R is dual to a certain B as occurs
above, and that the collection of unbounded faces of R is dual to Q. So the previous theorem
can be used to get an explicit formula for the number of unbounded faces of R in terms of
the f -vector of R.

Theorem 7.27 If f = (f0, . . . , fd) is the f -vector of a simple d-polyhedron R, and if fuj is
the number of unbounded j-faces of R, j = 1, . . . , d, then

fui (R) = fi −
i∑

j=0

(−1)j
(
d− j
d− i

)
fj, i = 0, . . . , d.

7.6 Notes

In 1905 Dehn [14] worked on the equations for d = 4 and d = 5 and conjectured the existence
of analogous equations for d > 5. Sommerville [42] derived the complete system of equations
for arbitrary d in 1927. Klee [20] in 1964 rediscovered the Dehn-Sommerville Equations in
the more general setting of manifolds and incidence systems. In addition to d-polytopes, the
equations hold also for simplicial (d−1)-spheres, triangulations of homology (d−1)-spheres,
and Klee’s Eulerian (d− 1)-spheres. See [16] for more historical details and generalizations.
McMullen and Walkup [33] (see also [32]) introduced the important notion of the h-vector
(though they used the letter g). (I have heard, however, that Sommerville may have also
formulated the Dehn-Sommerville Equations in a form equivalent to hi = hd−i—I have yet
to check this.) Stanley [43, 44, 45, 46, 47, 48] made the crucial connections between the
h-vector and algebra, some of which we shall discuss later.

For more on the Dehn-Sommerville Equations, see [6, 16, 32, 51].
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8 Shellability

We mentioned that early “proofs” of Euler’s Relation assumed that (the boundaries of)
polytopes are shellable. But this wasn’t established until 1970 by Bruggesser and Mani [8]—
with a wonderful insight reaffirming that hindsight is 20/20.

Recall for any d-polytope P that F(P ) denotes the set of all faces of P , both proper and
improper, and F(bdP ) = F(P ) \ {P}. Suppose S is a nonempty subset of F(bdP ) with
the property that if F and G are two faces of P with F ⊆ G ∈ S, then F ∈ S; that is to
say, the collection S is closed under inclusion.

We define S to be shellable if the following conditions hold:

1. For every j-face F in S there is a facet of P in S containing F (S is pure).

2. The facets in S can be ordered F1, . . . , Fn such that for every k = 2, . . . , n, Tk :=
F(Fk)∩ (F(F1)∪· · ·∪F(Fk−1)) is a shellable collection of faces of the (d−1)-polytope
Fk.

Such an ordering of the facets in S is called a shelling order. We say that a d-polytope P is
shellable if F(bdP ) is shellable.

We note first that if S consists of a single facet F of P and all of the faces contained
in F , then condition (1) is trivially true and condition (2) is vacuously true. So every 0-
polytope is shellable (there is only one facet—the empty set). It is easy to check that every
1-polytope is shellable (try it). Condition (2) implies in particular that the intersection
Fk ∩ (F1 ∪ · · · ∪ Fk−1) is nonempty, since the empty set is a member of F(F1), . . . ,F(Fk).

Exercise 8.1

1. Let P be a 2-polytope. Use the definition to characterize when a set S of faces of P is
shellable. 2

2. Investigate the analogous question when P is a 3-polytope.

Exercise 8.2 Let P be a d-simplex. Then P has d+ 1 vertices, and every subset of vertices
determines a face of P . Let {F1, . . . , Fm} be any subset of facets of P . Prove that S :=
F(F1) ∪ · · · ∪ F(Fm) is shellable, and the facets of S can be shelled in any order. 2

Theorem 8.3 (Bruggesser-Mani 1971) Let P be a d-polytope. Then P is shellable. Fur-
ther, there is a shelling order F1, . . . , Fn of the facets of P such that for every k = 1, . . . , n,
there is a shelling order Gk

1, . . . , G
k
nk

of the facets of Fk for which F(Fk) ∩ (F(F1) ∪ · · · ∪
F(Fk−1)) equals F(Gk

1) ∪ · · · ∪ F(Gk
` ) for some 0 ≤ ` ≤ nk. Moreover, ` = nk if and only if

k = n.
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The case ` = 0 occurs if and only if k = 1, and is just a sneaky way of saying that
F(bdF1) is shellable.

Imagine that P is a planet and that you are in a rocket resting on one of the facets of
P . Take off from the planet in a straight line, and create a list of the facets of P in the
order in which they become “visible” to you (initially one one facet is visible). Proceed “to
infinity and beyond,” returning toward the planet along the same line but from the opposite
direction. Continue adding facets to your list, but this time in the order in which they
disappear from view. The last facet on the list is the one you land on. Bruggesser and Mani
proved that this is a shelling order (though I believe they traveled by balloon instead of by
rocket). The proof given here is a dual proof.

Proof. We’ll prove this by induction on d. It’s easy to see the result is true if d = 0 and
d = 1, so assume d > 1. Let P ∗ ⊂ Rd be a polytope dual to P . Choose a vector c ∈ Rd

such that cTv is different for each vertex v of P ∗. Order the vertices v1, . . . , vn by increasing
value of cTvi. The vertices of P ∗ correspond to the facets F1, . . . , Fn of P . We claim that
that this is a shelling order.

For each i = 1, . . . , n, define F∗(vi) to be the set of faces of P ∗ that contain vi (including
P ∗ itself). Let Sk(P

∗) = F∗(v1) ∪ · · · ∪ F∗(vk). We will prove that Sk(P
∗) is dual (anti-

isomorphic) to a shellable collection of faces of P , k = 1, . . . , n.
The result follows from the following observations about the duality between P and P ∗:

1. As mentioned above, the facets F1, . . . , Fn of P correspond to the vertices v1, . . . , vn of
P ∗.

2. For each k, F(Fk) is dual to the set F∗(vk).

3. For each k, the facets Gk
1, . . . , G

k
nk

of Fk correspond to the edges of P ∗ that contain
vk, which in turn correspond to the vertices vk1 , . . . , v

k
nk

of a vertex figure F ∗k of P ∗ at
vk. The facets Gk

1, . . . , G
k
nk

are to be ordered by the induced ordering of vk1 , . . . , v
k
nk

by
c. (In constructing the vertex figure, be sure that its vertices have different values of
cTvki .)

4. For each k and i, the set F(Gk
i ) is dual to the set F∗(vki ), defined to be the set of faces

of F ∗k that contain vki .

5. For each k, F∗(vk) ∩ (F∗(v1) ∪ · · · ∪ F∗(vk−1)) is dual to the collection of faces in Tk.
It consists of all of the faces of P ∗ containing both vk and some “lower” vertex vi,
i = 1, . . . , k − 1. Equivalently, these are the faces of P ∗ containing at least one edge
joining vk to some lower vertex vi, i = 1, . . . , k − 1. Thus, looking at the vertex figure
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F ∗k , this set of faces corresponds to the set S`(F
∗
k ) = F∗(vk1) ∪ · · · ∪ F∗(vk` ) for some

` ≤ nk. This set S`(F
∗
k ) is dual to a shellable collection of faces of Fk by induction.

Further, ` = nk if and only if k = n. 2

Exercise 8.4 (Line Shellings) Assume P ⊂ Rd is a d-polytope containing the origin O in
its interior. Let F1, . . . , Fn be the facets of P and let H1, . . . , Hn be the respective supporting
hyperplanes for these facets. Choose a direction c ∈ Rd and define the line L := {tc : t ∈ R}.
Assume that c has been chosen such that as you move along L you intersect the various Hi

one at a time (why does such a line exist?). By relabeling, if necessary, assume that as you
start from O and move in one direction along L (t positive and increasing) you encounter
the Hi in the order H1, . . . , H`. Now move toward O from infinity along the other half of
L (t negative and increasing) and assume that you encounter the remaining Hi in the order
H`+1, . . . , Hn. Prove that F1, . . . , Fn constitutes a shelling order by examining the polar dual
P ∗. (Such shellings are called line shellings.) 2

Exercise 8.5 Find a 2-polytope P and some ordering of the facets of P that is a shelling,
but not a line shelling, regardless of the location of O. 2

Exercise 8.6 Let P be a d-polytope and F1, . . . , Fn be a line shelling order of its facets.
For k = 1, . . . , n, let Sk = F(F1) ∪ · · · ∪ F(Fk). For any subset of faces S of P define

χ̂(S) :=
d−1∑
j=−1

(−1)d−j−1fj(S).

Prove Euler’s Relation by showing that

χ̂(Sk) =

{
0, k = 1, . . . , n− 1,
1, k = n.

2

Exercise 8.7 Let P be a d-polytope. If F1, . . . , Fn is a line-shelling of P , then the only time
Fk ∩ (F1 ∪ · · · ∪ Fk−1) contains all of the facets of Fk is when k = n. Show that the same is
true for arbitrary shelling orders, not just line shellings. Suggestion: Use Exercise 8.6. 2

Exercise 8.8 Let P be a d-polytope and v be any vertex of P . Prove that there is a shelling
order of P such that the set of facets containing v are shelled first. 2

63



Exercise 8.9 Let P be a simplicial d-polytope. Explain how the h-vector of P can be
calculated from a shelling order of its facets. Do this in the following way: Assume that
F1, . . . , Fn is a shelling order of the facets of a simplicial d-polytope. Prove that for every
k = 1, . . . , n there is a face Gk in F(Fk) such that F(Fk) ∩ (F(F1) ∪ · · · ∪ F(Fk−1)) is the
set of all faces of Fk not containing Gk. Then show that

hi(Sk) =

{
hi(Sk−1) + 1, i = f0(Gk),
hi(Sk−1), otherwise.

Then conclude hi(P ) = card {k : cardGk = i}. 2

Exercise 8.10 Finish the proof of Gram’s Theorem (Section 6.4) by showing that∑
F :0≤dimF≤d

(−1)dimFaF (x) = 0

if x 6∈ P . Suggestion: Suppose P is a d-polytope in Rd. Each facet Fi has a unique supporting
hyperplane Hi. Let H+

i be the closed halfspace associated with Hi containing P , and H−i be
the opposite closed halfspace. Let F be any proper face of P . Define x to be beyond F (or F
to be visible from x) if and only if there is at least one i such that F ⊂ Fi and x ∈ H−i \Hi.
Note that aF (x) = 0 if and only if F is visible from x. Now prove that the set of faces visible
from x is shellable. Apply Euler’s Relation (Exercise 8.6). 2

Definition 8.11 Let V be a finite set, and let ∆ be a nonempty collection of subsets of V
with the property that if F ∈ ∆ and G ⊆ F then G ∈ ∆. Then ∆ is called an (abstract)
simplicial complex. In particular, the empty set is in every simplicial complex. Sets of ∆ of
cardinality j are called faces of dimension j − 1. The number of such faces is denoted fj−1.
Faces of dimension 0 and 1 are called vertices and edges, respectively, and faces of maximum
dimension are called facets. The dimension of ∆ is the dimension of its facets. The f -vector
of a simplicial (d− 1)-complex ∆ is (f−1, . . . , fd−1) (though sometimes we omit writing f−1),
and its h-vector (h0, . . . , hd) is defined via equation (5). If every face is contained in a facet,
then ∆ is said to be pure. For any finite set F in ∆ let F(F ) denote the collection of all
subsets of F (including F and ∅).

Definition 8.12 We can define shellability for simplicial complexes to correspond to the
situation for simplicial polytopes. Let ∆ be a simplicial complex on V . Then ∆ is said to be
shellable if it is pure and its facets can be ordered F1, . . . , Fn such that for every k = 1, . . . , n
there is a face Gk in F(Fk) such that F(Fk) ∩ (F(F1) ∪ · · · ∪ F(Fk−1)) is the set of all faces
of Fk not containing Gk. As in Exercise 8.9, a shelling of ∆ can be used to determine its
h-vector.
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Exercise 8.13 Let 1 ≤ k ≤ n and Consider the simplicial complex ∆ on the set V =
{1, . . . , n} such that F ∈ ∆ iff cardF ≤ k. Prove that ∆ is shellable and find a “natural”
shelling order for its facets.

More details on shellings can be found in [6, 16, 32, 51]. Ziegler [51] proves that not
all 4-polytopes are extendably shellable. In particular, there exists a 4-polytope P and a
collection F1, . . . , Fm of facets of P such that F(F1) ∪ · · · ∪ F(Fm) is shellable with shelling
order F1, . . . , Fm, but this cannot be extended to a shelling order F1, . . . , Fm, Fm+1, . . . , Fn
of all of the facets of P .
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9 The Upper Bound Theorem

At about the same time that polytopes were proved to be shellable, two important extremal
f -vector results were also settled. What are the maximum and minimum values of fj(P ) for
simplicial d-polytopes with n vertices? We now know that the maxima are attained by cyclic
polytopes, which we discuss in this section, and the minima by stacked polytopes, which we
tackle in the next.

A good reference for this section is [32]. In fact, McMullen discovered the proof of the
Upper Bound Theorem while writing this book with Shephard. Originally the intent was to
report on progress in trying to solve what was then known as the Upper Bound Conjecture.
See also [6, 51].

To construct cyclic polytopes, consider the moment curve {m(t) := (t, t2, . . . , td) : t ∈
R} ⊂ Rd and choose n ≥ d + 1 distinct points vi = m(ti) on the curve, t1 < · · · < tn. Let
V = {v1, . . . , vn} and set C(n, d) := convV , the convex hull of V . This is called a cyclic
polytope.

First we will show that C(n, d) is a simplicial d-polytope. Let W be the set of any d
points on the moment curve and let a1x1 + · · ·+adxd = a0 be the equation of any hyperplane
containing W . Then a1ti+a2t

2
i + · · ·+adtdi = a0 if vi = m(ti) ∈ W . Therefore the polynomial

a1t+a2t
2 + · · ·+adt

d−a0 has at least d roots. But being nontrivial and of degree ≤ d it has
at most d roots. Therefore there can be no other points of the moment curve on H besides
W . We conclude that C(n, d) is full-dimensional, and every facet contains only d vertices
and hence is a simplex.

Now we prove that C(n, d) has a remarkable number of lower dimensional faces.

Theorem 9.1 Let W ⊂ V have cardinality at most bd/2c. Then convW is a face of C(n, d).

Consequently fj−1(C(n, d)) =
(
n
j

)
, j = 0, . . . , bd/2c.

Proof. Consider the polynomial

p(t) =
∏
vi∈W

(t− ti)2.

It has degree at most d, so it can be written a0 + a1t + · · · + adt
d. Note that ti is a root if

vi ∈ W and that p(ti) > 0 if vi ∈ V \W . So the vertices of V which lie on the hyperplane
H whose equation is a1x1 + · · · + adxd = −a0 are precisely the vertices in W , and H is a
supporting hyperplane to C(n, d). So we have a supporting hyperplane for convW , which is
therefore a face of C(n, d). 2
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The cyclic polytope C(n, d) obviously has the maximum possible number of j-faces,
1 ≤ j ≤ bd/2c − 1, of any d-polytope with n vertices. Polytopes of dimension d for which

fj =
(

n
j + 1

)
, j = 0, . . . , bd/2c − 1, are called neighborly. It might be supposed that C(n, d)

has the maximum possible number of higher dimensional faces as well. Motzkin [34] implicitly
conjectured this, and McMullen[31] proved this to be the case.

We first examine the h-vector. Note that f(C(n, d), t) agrees with (1 + t)n in the co-
efficients of ti, i = 0, . . . , bd/2c. Knowing that hi depends only upon f−1, . . . , fi−1 (see

Equation (5)), we have that h(C(n, d), t) = (1− t)df(C(n, d), t
1− t) agrees with

(1− t)d(1 +
t

1− t
)n = (1− t)d−n = (1 + t+ t2 + · · ·)n−d

in the coefficients of ti, i = 0, . . . , bd/2c. Therefore,

hi(C(n, d)) =

(
n− d+ i− 1

i

)
, i = 0, . . . , bd/2c

(verify this!). The second half of the h-vector is determined by the Dehn-Sommerville Equa-
tions.

Theorem 9.2 (Upper Bound Theorem, McMullen 1970) If P is a convex d-polytope
with n vertices, then fj(P ) ≤ fj(C(n, d)), j = 1, . . . , d− 1.

Proof. Perturb the vertices of P slightly, if necessary, so that we can assume P is simpli-
cial. This will not decrease any component of the f -vector and will not change the number
of vertices. Since the components of the h-vector are nonnegative combinations of the com-
ponents of the f -vector (Equation (6)), it suffices to show that hi(P ) ≤ hi(C(n, d)) for all i.

Because of the Dehn-Sommerville Equations, it is enough to prove hi(P ) ≤
(n− d+ i− 1

i

)
,

i = 1, . . . , bd/2c.
Choose any simple d-polytope Q ⊂ Rd dual to P and recall that hi(P ) by definition

equals hi(Q), which equals the number of vertices of Q of indegree i whenever the edges are
oriented by any sufficiently general vector c ∈ Rd. Let F be any facet of Q. Then h(F ) can
be obtained using the same vector c by simply restricting attention to the edges of Q in F .

Claim 1.
∑
F

hi(F ) = (i+ 1)hi+1(Q) + (d− i)hi(Q). Let v be any vertex of Q of indegree

i+1. We can drop any one of the i+1 edges entering v and find the unique facet F containing
the remaining d − 1 edges incident to v. The vertex v will have indegree i when restricted
to F . On the other hand, let v be any vertex of Q of indegree i. We can drop any one of
the d− i edges leaving v and find the unique facet F containing the remaining d− 1 edges
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incident to v. This time the vertex v will have indegree i + 1 when restricted to F . These
two cases account for all vertices of indegree i in the sum

∑
F

hi(F ).

Claim 2.
∑
F

hi(F ) ≤ nhi(Q). For, consider any facet F . We may choose a vector c

so that the ordering of vertices of Q by c begins with the vertices of F (choose c to be a
slight perturbation of an inner normal vector of F ). It is now easy to see that with this
ordering, a contribution to hi(F ) gives rise to a contribution to hi(Q). Thus hi(F ) ≤ hi(Q),
and summing over the facets of Q proves the claim.

From the two claims we can easily prove (i + 1)hi+1(Q) ≤ (n − d + i)hi(Q) from which

hi(Q) ≤
(n− d+ i− 1

i

)
follows quickly by induction on i. 2

What can be said about a d-polytope P for which f(P ) = f(C(n, d))? Obviously P must
be simplicial and neighborly. Shemer [41] has shown that there are very many non-cyclic
neighborly polytopes. If d is even, every neighborly d-polytope is simplicial, but nonsimplicial
neighborly d-polytopes exist when d is odd [6, 16].

Again, assume that V = {vi = m(ti), i = 1, . . . , n}, t1 < · · · < tn, n ≥ d + 1, is the set
of vertices of a cyclic polytope. Suppose W is a subset of V of cardinality d. When does W
correspond to a facet of C(n, d) = convV ? Looking back at the discussion at the beginning
of this section, in which we proved C(n, d) is simplicial, we observe that the polynomial

p(t) =
∏
vi∈W

(t− ti)

changes sign at each of its roots, and that W corresponds to a facet if and only if the numbers
p(ti) all have the same sign for vi 6∈ W . Therefore, “between” every two nonelements
of W must lie an even number of elements of W . The next theorem is immediate (see
[6, 16, 32, 51]).

Theorem 9.3 (Gale’s Evenness Condition) The subset W corresponds to a facet of
C(n, d) if and only if for every pair vk, v` 6∈ W , k < `, the set W ∩ {vi : k < i < `}
has even cardinality.

The above theorem shows that the combinatorial structure of the cyclic polytope does not
depend upon the particular choice of the values ti, i = 1, . . . , n. Thus, from a combinatorial
point of view, we are justified in calling C(n, d) the cyclic d-polytope with n vertices.
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Example 9.4 Here is a representation of the facets of C(8, 5):

1 2 3 4 5 6 7 8
1 2 3 4 5
1 2 3 5 6
1 3 4 5 6
1 2 3 6 7
1 3 4 6 7
1 4 5 6 7
1 2 3 7 8
1 3 4 7 8
1 4 5 7 8
1 5 6 7 8
1 2 3 4 8
1 2 4 5 8

2 3 4 5 8
1 2 5 6 8

2 3 5 6 8
3 4 5 6 8

1 2 6 7 8
2 3 6 7 8

3 4 6 7 8
4 5 6 7 8

2

Exercise 9.5 (Ziegler [51]) Show (bijectively) that the number of ways in which 2k ele-

ments can be chosen from {1, . . . , n} in “even blocks of adjacent elements” is
(
n−k
k

)
. Thus,

derive from Gale’s evenness condition that the formula for the number of facets of C(n, d) is

fd−1(C(n, d)) =

(
n− dd

2
e

bd
2
c

)
+

(
n− 1− dd−1

2
e

bd−1
2
c

)
,

where d·e is the least integer function, with dk
2
e = k−bk/2c. Here the first term corresponds

to the facets for which the first block is even, and the second term corresponds to the cases
where the first block is odd. Deduce

fd−1(C(n, d)) =


n

n−k

(
n−k
k

)
, for d = 2k even,

2
(
n−k−1

k

)
, for d = 2k + 1 odd.
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2

As a consequence, for fixed d the number of facets of C(n, d) grows like a polynomial of
degree bd/2c (see [51]). Dually, this gives us an upper bound on the number of basic feasible
solutions of a linear program in d variables described by n linear inequalities.

Exercise 9.6 (Ziegler [51]) Show that if a polytope is k-neighborly (every subset of ver-
tices of cardinality at most k corresponds to a (k − 1)-face), then every (2k − 1)-face is a
simplex. Conclude that if a d-polytope is (bd/2c+ 1)-neighborly, then it is a simplex. 2
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10 The Lower Bound Theorem

10.1 Stacked Polytopes

What is the least number of j-faces that a simplicial d-polytope with n vertices can have?
The answer turns out to be achieved simultaneously for all j by a stacked polytope. A
d-polytope P (n, d) is stacked if either n = d + 1 and it is a d-simplex, or else n > d + 1
and P (n, d) is obtained by building a shallow pyramid over one of the facets of some stacked
polytope P (n−1, d). Unlike the cyclic polytopes, not all stacked d-polytopes with n vertices
are combinatorially equivalent. See [6, 16].

To calculate the f -vector of a stacked polytope P = P (n, d), note first that for n > d+1,

fj(P (n, d)) = fj(P (n− 1, d)) +


(
d
j

)
, j = 0, . . . , d− 2,

d− 1, j = d− 1.

The next exercise shows that the h-vector has a particularly simple form.

Exercise 10.1 Prove

fj(P (n, d)) =


(
d+1
j+1

)
+ (n− d− 1)

(
d
j

)
, j = 0, . . . , d− 2,

(d+ 1) + (n− d− 1)(d− 1), j = d− 1,

and

hi(P (n, d)) =

{
1, i = 0 or i = d,
n− d, i = 1, . . . , d− 1.

2

Theorem 10.2 (Lower Bound Theorem, Barnette 1971, 1973) If P is a simplicial
convex d-polytope with n vertices, then fj(P ) ≥ fj(P (n, d)), j = 1, . . . , d− 1.

The lower bound for d = 4 was stated by Brückner [7] in 1909 as a theorem, but his proof
was later shown to be invalid (Steinitz [49]). Barnette [1] first proved the case j = d−1, and
then the remaining cases [2]. His proof is reproduced in [6]. He also proved that if d ≥ 4 and
fd−1(P ) = fd−1(P (n, d)), then P is a stacked d-polytope. Billera and Lee [4] extended this
by showing that if d ≥ 4 and fj(P ) = fj(P (n, d)) for any single value of j, j = 1, . . . , d− 1,
then P is stacked.

Even though Barnette’s proof is not difficult, we will present the later proof by Kalai [17],
which provides some deep insight into connections between the h-vector and other properties
of simplicial polytopes.
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10.2 Motion and Rigidity

The vertices and edges of a convex d-polytope provide an example of a framework. More
generally, a (bar and joint) framework G in Rd is a finite collection of vertices (joints)
vi ∈ Rd, i ∈ V := {1, . . . , n}, and edges (bars) vivj := conv {vi, vj}, i 6= j, ij := (i, j) ∈ E ⊂
V × V . (We assume ij ∈ E if and only if ji ∈ E.) We do not care whether the vertices
are all distinct, or whether the edges coincidentally intersect each other at other than their
common endpoints. Define the dimension of the framework to be dim aff {v1, . . . , vn}.

Now let I ⊆ R be an open interval and parameterize the vertices as vi(t) such that
vi = vi(0), i = 1, . . . , n, and ‖vi(t)− vj(t)‖2 = ‖vi − vj‖2, ij ∈ E, for all t ∈ I; i.e., no edge
is changing length. This defines a motion of the framework. A motion of any framework
can be induced by a Euclidean motion (such as a translation or rotation) of the entire space
Rd—such induced motions are called trivial. A framework admitting only trivial motions is
rigid.

Exercise 10.3 Give some examples of motions of two-dimensional frameworks. 2

Since each edge-length is constant during a motion, we have

0 = d
dt

[(vi(t)− vj(t))T (vi(t)− vj(t))]

= 2(vi(t)− vj(t))T (v′i(t)− v′j(t)), ij ∈ E.

Setting t = 0 and ui := v′i(0), i = 1, . . . , n, we have

(vi − vj)T (ui − uj) = 0 for all ij ∈ E. (7)

By definition, any set of vectors u1, . . . , un ∈ Rd that satisfies Equation (7) is said to
be an infinitesimal motion of the framework. It can be checked that not every infinitesimal
motion is derived from a motion. The set of infinitesimal motions of a framework is a vector
space and is called the motion space of the framework.

Exercise 10.4 Give some examples of infinitesimal motions of two-dimensional frameworks.
Find some that come from motions, and some that do not. 2

Exercise 10.5 Prove that u1, . . . , un is an infinitesimal motion if and only if the projections
of the vectors ui and uj onto the vector vi − vj agree for every ij ∈ E. 2

When we have an infinitesimal motion of the vertices and edges of a polytope P , then
we simply say we have an infinitesimal motion of P .
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Some infinitesimal motions of a framework are clearly trivial—for example, we may choose
the vectors ui to be all the same. To make the notion of trivial more precise, we first define
an infinitesimal motion of Rd to be an assignment of a vector u ∈ Rd to every point v ∈ Rd

(u depends upon v) such that (v − v)T (u − u) = 0 for every pair of points v, v ∈ Rd. An
infinitesimal motion of a framework is trivial if it is the restriction of some infinitesimal
motion of Rd to that framework. A framework that admits only trivial infinitesimal motions
is said to be infinitesimally rigid. Infinitesimal rigidity implies rigidity, but a framework
can be rigid without being infinitesimally rigid. But in real life, I would rather rely upon
scaffolding that is infinitesimally rigid!

Exercise 10.6 Give some examples of trivial and nontrivial infinitesimal motions of two-
dimensional frameworks. 2

Theorem 10.7 Let P ⊂ Rd be a d-simplex with vertices v1, . . . , vd+1, and u1, . . . , ud+1 be
an infinitesimal motion of P . Then ud+1 is determined by u1, . . . , ud.

Proof. Let ei = vi − vd+1, i = 1, . . . , d. These vectors are linearly independent. The
projections of ud+1 and ui onto ei must agree, i = 1, . . . , d, and ud+1 is determined by these
d projections. 2

Theorem 10.8 The dimension of the motion space of a d-simplex P ⊂ Rd is
(
d+1

2

)
.

Proof. Let P have vertices v1, . . . , vd+1 ∈ Rd. Choose any vector u1 ∈ Rd. There are d
degrees of freedom in this choice—one for each coordinate. Choose any vector u2 ∈ Rd such
that the projections p2

1 of u2 and of u1 on the vector v1−v2 agree. There are d−1 degrees of
freedom in this choice, since you can freely choose the component of u2 orthogonal to p2

1. In
general, for k = 2, . . . , d, choose any vector uk ∈ Rd such that the projections pki of uk and of
ui on the vectors vi−vk agree, i = 1, . . . , k−1. There are d−k+1 degrees of freedom in this
choice, since you can freely choose the component of uk orthogonal to the span of pk1, . . . , p

k
k−1.

The resulting set of vectors u1, . . . , ud+1 is an infinitesimal motion of P , all infinitesimal

motions of P can be constructed in this way, and there are d+(d−1)+ · · ·+2+1+0 =
(
d+1

2

)
degrees of freedom in constructing such a set of vectors. 2

Theorem 10.9 Let P ⊂ Rd be a d-simplex. Then P is infinitesimally rigid, and in fact
every infinitesimal motion of P uniquely extends to an infinitesimal motion of Rd.

Proof. That the extension must be unique if it exists is a consequence of Theorem 10.7, for
if v is any point in Rd and u is its associated infinitesimal motion vector, then u is uniquely
determined by any subset of d vertices of P whose affine span misses v.
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To show that an extension is always possible, let v1, . . . , vd+1 be the vertices of P , and
u1, . . . , ud+1 be an infinitesimal motion of P . Then (vi − vj)T (ui − uj) = 0 for all i, j. So

vTi ui + vTj uj = vTi uj + vTj ui (8)

for all i, j.
Any v ∈ Rd can be uniquely written as an affine combination of v1, . . . , vd+1:

v =
d+1∑
i=1

aivi,

where
∑d+1
i=1 ai = 1. Define

u =
d+1∑
i=1

aiui.

We claim that this defines an infinitesimal motion of Rd.
Choose v, v ∈ Rd. Assume that

v =
d+1∑
i=1

aivi,

v =
d+1∑
i=1

bivi,

where
∑d+1
i=1 ai =

∑d+1
i=1 bi = 1. Let

u =
d+1∑
i=1

aiui,

u =
d+1∑
i=1

biui.

We must show that (v − v)T (u− u) = 0; i.e.,(∑
i

aivi −
∑
i

bivi

)T ∑
j

ajuj −
∑
j

bjuj

 = 0.

Equivalently, we must show∑
i

∑
j

aiajv
T
i uj +

∑
i

∑
j

bibjv
T
i uj =

∑
i

∑
j

aibjv
T
i uj +

∑
i

∑
j

biajv
T
i uj. (9)

74



Now I know there must be slicker way of doing this, but here is one way. Multiply Equa-
tion (8) by aiaj and sum over i and j:∑

i

∑
j

aiajv
T
i ui +

∑
i

∑
j

aiajv
T
j uj =

∑
i

∑
j

aiajv
T
i uj +

∑
i

∑
j

aiajv
T
j ui

∑
j

aj
∑
i

aiv
T
i ui +

∑
i

ai
∑
j

ajv
T
j uj =

∑
i

∑
j

aiajv
T
i uj +

∑
i

∑
j

aiajv
T
i uj

∑
i

aiv
T
i ui +

∑
j

ajv
T
j uj = 2

∑
i

∑
j

aiajv
T
i uj

2
∑
i

aiv
T
i ui = 2

∑
i

∑
j

aiajv
T
i uj

∑
i

aiv
T
i ui =

∑
i

∑
j

aiajv
T
i uj.

Similarly, ∑
i

biv
T
i ui =

∑
i

∑
j

bibjv
T
i uj.

Therefore, the left-hand side of Equation (9) equals∑
i

aiv
T
i ui +

∑
i

biv
T
i ui. (10)

Now multiply Equation (8) by aibj and sum over i and j:∑
i

∑
j

aibjv
T
i ui +

∑
i

∑
j

aibjv
T
j uj =

∑
i

∑
j

aibjv
T
i uj +

∑
i

∑
j

aibjv
T
j ui

∑
i

aiv
T
i ui +

∑
j

bjv
T
j uj =

∑
i

∑
j

aibjv
T
i uj +

∑
i

∑
j

ajbiv
T
i uj

∑
i

aiv
T
i ui +

∑
i

biv
T
i ui =

∑
i

∑
j

aibjv
T
i uj +

∑
i

∑
j

ajbiv
T
i uj.

Therefore, the right-hand side of Equation (9) also equals (10). 2

Corollary 10.10 The dimension of the space of infinitesimal motions of Rd is
(
d+1

2

)
.
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Corollary 10.11 A d-dimensional framework G in Rd is infinitesimally rigid if and only if
its motion space has dimension

(
d+1

2

)
. In this case, every infinitesimal motion is determined

by its restriction to any d affinely independent vertices of G.

Corollary 10.12 Let G and G′ be two infinitesimally rigid d-dimensional frameworks in Rd

that have d affinely independent vertices in common. Then the union of G and G′ is also
infinitesimally rigid.

Given a framework G in Rd with vertices v1, . . . , vn, we can write the conditions for
u1, . . . , un to be an infinitesimal motion in matrix form. Let f0 = n and let A be a matrix
with f1 rows, one for each edge of G, and df0 columns, d for each vertex of G. In the row
corresponding to edge ij, place the row vector (vj − vi)T in the d columns corresponding to
vi, and vi − vj in the d columns corresponding to vj. The remaining entries of A are set to
0. Let uT = (uT1 , . . . , u

T
n ). Then u1, . . . , un is an infinitesimal motion if and only if Au = O

(you should check this).

Theorem 10.13 The motion space of a framework is the nullspace of its matrix A.

10.3 Stress

The motion space provides a geometrical interpretation of the nullspace of A. What about
the left nullspace? An element λ of the left nullspace assigns a number λij (= λji) to each
edge of the framework, and the statement λTA = OT is equivalent to the equations∑

j:ij∈E
λij(vj − vi) = O for every vertex i. (11)

This can be regarded as a set of equilibrium conditions (one at each vertex) for the λij, which
may be thought of as forces or stresses on the edges of the framework. The left nullspace of
A is called the stress space, and A itself is sometimes called the stress matrix.

Exercise 10.14 Give some examples of stresses for two-dimensional frameworks.

Putting together everything we know, we have several ways to test infinitesimal rigidity:

Theorem 10.15 The following are equivalent for a d-dimensional framework G with f0

vertices and f1 edges:

1. The framework G is infinitesimally rigid.
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2. The dimension of the motion space of G (the nullspace of A) is
(
d+1

2

)
.

3. The rank of A is df0 −
(
d+1

2

)
.

4. The dimension of the stress space of G (the left nullspace of A) is f1 − df0 +
(
d+1

2

)
.

Corollary 10.16 Let P be a simplicial d-polytope. Then P is infinitesimally rigid if and
only if the dimension of its stress space equals g2(P ) := h2(P )− h1(P ).

Proof. From Equation (5), h1(P ) = −df−1 + f0 and h2(P ) =
(

d
d−2

)
f−1 − (d− 1)f0 + f1, so

h2(P )− h1(P ) =
(
d
2

)
− (d− 1)f0 + f1 + d− f0 = f1 − df0 +

(
d+1

2

)
. 2

10.4 Infinitesimal Rigidity of Simplicial Polytopes

A good reference for this section is the paper by Roth [38]. Cauchy [9] proved that simplicial
3-polytopes are rigid. Dehn [15] used the stress matrix to prove the stronger result that
these polytopes are infinitesimally rigid.

Theorem 10.17 (Dehn, 1916) Let P be a simplicial convex 3-polytope. Then P admits
only the trivial stress λij = 0 for all edges ij.

Proof. This proof is my slight modification of the proof presented in Roth [38].
Suppose there is a non-trivial stress. Label each edge ij ∈ E with the sign (+,−, 0) of

λij. Suppose there is a vertex v such that all edges incident to it are labeled 0. Then delete
v and take the convex hull of the remaining vertices. The result cannot be two-dimensional,
because it is clear that there can be no non-trivial stress on the edges of a single polygon
(do you see why?). So the result is three-dimensional. If it is not simplicial, triangulate the
non-simplicial faces arbitrarily, labeling the new edges 0. Repeat this procedure until you
have a triangulated 3-polytope Q (possibly with some coplanar triangles) such that every
vertex is incident to at least one nonzero edge. Note that every nonzero edge of Q is an edge
of the original polytope P .

Now in each corner of each triangle of Q place the label 0 if the two edges meeting there
are of the same sign, 1 if they are of opposite sign, and 1/2 if one is zero and the other
nonzero.

Claim 1. The sum of the corner labels at each vertex v is at least four. First, because v
is a vertex of P , the nonzero edges of P incident to v cannot all have the same sign. Consider
now the sequence of changes in signs of just the nonzero edges of P incident to v as we circle
around v. If there were only two changes in sign, the positive edges could be separated from

77



the negative edges by a plane passing through v, since no three edges incident to v in P are
coplanar. So there must be at least four changes in sign. The claim for the corner labels in
Q now follows easily.

Claim 2. The sum of the three corner labels for each triangle of Q is at most two. Just
check all the possibilities of the edge and corner labels for a single triangle.

Now consider the sum S of all the corner labels of Q. By Claim 1 the sum is at least
4f0, where f0 is the number of vertices of Q. By Claim 2 the sum is at most 2f2, where f2

is the number of triangles of Q. But f0 − f1 + f2 = 2 by Euler’s Relation, where f1 is the
number of edges of Q. Also, each triangle has three edges and each edge is in two triangles,
so 3f2 = 2f1. Therefore f2 = 2f0 − 4. So 4f0 ≤ S ≤ 4f0 − 8 yields a contradiction. 2

Corollary 10.18 Simplicial convex 3-polytopes are infinitesimally rigid.

Proof. The dimension of the stress space equals 0, which equals h2(P ) − h1(P ) by the
Dehn-Sommerville Equations. The result follows by Corollary 10.16. 2

Corollary 10.18 tells us that if we build the geometric skeleton of a simplicial 3-polytope
out of bars which meet at flexible joints then the structure will be infinitesimally rigid.
Similarly the structure will be infinitesimally rigid if we build the boundary of the polytope
out of triangles which meet along flexible edges. However, if the structure is not convex,
it might flex infinitesimally, and there are easy examples of this. Connelly [11] showed the
truly remarkable fact that that there are simplicial 2-spheres immersed in R3 that have a
finite real flex—a motion that is not just infinitesimal. Sabitov [39] proved that during such
a flex the enclosed volume remains constant (the “Bellows” Theorem), a result that was
extended to all triangulated orientable flexible surfaces by Connelly, Sabitov, and Walz [12].
Of course, if a convex 3-polytope is not simplicial, then its skeleton may flex (consider the
cube).

Whiteley [50] extended the rigidity theorem to higher dimensions.

Theorem 10.19 (Whiteley, 1984) Simplicial convex d-polytopes, d ≥ 3, are infinitesi-
mally rigid.

Proof. We proceed by induction on d. The result is true for d = 3, so assume P is a
simplicial d-polytope, d > 3. Let v0 be any vertex of P . Define G to be the framework
consisting of all vertices and edges contained in all facets containing v0 (the vertices and
edges of the closed star of v0). Let the edges of G be indexed by E. Construct Q, a vertex
figure of P at v0.
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Claim 1. The stress spaces of G (regarded as a d-dimensional framework) and of Q
(regarded as a (d − 1)-dimensional framework) have the same dimension. Stresses are un-
affected by Euclidean motions and by scaling of the framework, so assume without loss of
generality that v0 = O and the neighbors of v0 in G have coordinates (v1, a1), . . . , (vm, am),
with a1, . . . , am > 1. Assume that the hyperplane used to construct the vertex figure has
equation xd = 1. Hence the vertices of Q are vi/ai, i = 1, . . . ,m, regarded as a (d − 1)-
polytope in Rd−1. Let λ be a stress on G. For i = 1, . . . ,m, the equilibrium conditions (11)
imply  ∑

j 6=0:ij∈E
λij(vi − vj)

+ λi0vi = O,

and  ∑
j 6=0:ij∈E

λij(ai − aj)

+ λi0ai = 0.

Hence

λi0 = − 1

ai

∑
j 6=0:ij∈E

λij(ai − aj). (12)

Define λij = aiajλij for every edge vivj of Q. We can verify that λ is a stress on Q. For
i = 1, . . . ,m,∑

j 6=0:ij∈E
λij(

vi
ai
− vj
aj

) =
∑

j 6=0:ij∈E
λij(ajvi − aivj)

=
∑

j 6=0:ij∈E
λij(ajvi − aivi) +

∑
j 6=0:ij∈E

λij(aivi − aivj)

=

 ∑
j 6=0:ij∈E

λij(aj − ai)

 vi + ai
∑

j 6=0:ij∈E
λij(vi − vj)

= aiλi0vi + ai
∑

j 6=0:ij∈E
λij(vi − vj)

= ai(O)

= O.

Conversely, starting with a stress λ onQ, we can reverse this process, defining λij = λij/(aiaj)
for ij ∈ E, i, j 6= 0, and using Equation (12) to define λi0 for all i. In this manner we obtain
a stress for G.
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Claim 2. The framework G is infinitesimally rigid. The simplicial d-polytope Q is
infinitesimally rigid by induction, so by Theorem 10.15 the dimension of the stress space of
Q is f1(Q)− (d− 1)f0(Q) +

(
d
2

)
. Claim 1 implies that this is also the dimension of the stress

of G. Hence

f1(G)− df0(G) +
(
d+1

2

)
= (f1(Q) + f0(Q))− d(f0(Q) + 1) +

(
d+1

2

)
= f1(Q)− (d− 1)f0(Q) +

(
d
2

)
= the dimension of the stress space of Q
= the dimension of the stress space of G.

Therefore G is infinitesimally rigid by Theorem 10.15.
Now consider any two adjacent vertices v and v′ of G. The frameworks of their closed

stars are each infinitesimally rigid by Claim 2, and share d affinely independent vertices
(those on any common facet). Thus the union of these two frameworks is infinitesimally
rigid by Corollary 10.12. Therefore repeated application of Theorem 10.12 implies that P is
infinitesimally rigid. 2

10.5 Kalai’s Proof of the Lower Bound Theorem

Theorem 10.20 (Kalai, 1987) Let P be a simplicial d-polytope with n vertices. Then
fj(P ) ≥ fj(P (n, d)), j = 0, . . . , d− 1.

Proof. Since P is infinitesimally rigid, the Theorem dimension of its stress space equals
g2 := h2(P ) − h1(P ). Hence this quantity is nonnegative, and so h2(P ) ≥ h1(P ) = n − d.
Therefore f1(P ) ≥ f1(P (n, d)).

To establish the result for higher-dimensional faces, Kalai uses the “McMullen-Perles-
Walkup” (MPW) reduction. I am going to quote this proof almost verbatim from Kalai’s
paper, so will use his notation. Let φk(n, d) := fk(P (n, d). For a simplicial d-polytope C with

n vertices define γ(C) = f1(C)−φ1(n, d) = g1(C). Thus, for d ≥ 3, γ(C) = f1(C)−dn+
(
d+1

2

)
and for d = 2, γ(C) = f1(C)− n. Define also

γk(C) = fk(C)− φk(n, d).

Let S be any face of bdC with k vertices. The link of S in C is defined to be

lk (S,C) := {T : T is a face of bdC, T ∩ S = ∅, conv (T ∪ S) is a face of bdC}.

It is known that lk (S,C) is isomorphic to set of boundary faces of some (d − k)-polytope
(take repeated vertex figures). Define

γk(C) =
∑
{γ(lk (S,C)) : S ∈ C, |S| = k}.
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Thus, γ1(C) = γ0(C) = γ(C).

Proposition 10.21 Let C be a simplicial d-polytope, and let k, d be integers, 1 ≤ k ≤ d−1.
There are positive constants wi(k, d), 0 ≤ i ≤ k − 1, such that

γk(C) =
k−1∑
i=0

wi(k, d)γi(C). (13)

Proof. First note that

(k + 1)fk(C) =
n∑
i=1

fk−1(lk (v, C)). (14)

Put φk(n, d) = ak(d)n + bk(d). (Thus, ak(d) =
(
d
k

)
for 1 ≤ k ≤ d− 2 and ad−1(d) = d− 1.)

Easy calculation gives

2

(
dn−

(
d+ 1

2

))
ak−1(d− 1) + nbk−1(d− 1) = (k + 1)φk(n, d).

Let C be a simplicial d-polytope, d ≥ 3, with n vertices v1, . . . , vn. Assume that the degree
of vi in C is ni (i.e., f0(lk (vi, c)) = ni). Note that

∑n
i=1 ni = 2f1(C) = 2(dn−

(
d+1

2

)
+ γ(C)).

Therefore

n∑
i=1

φk−1(ni, d− 1) = ak−1(d− 1)
n∑
i=1

ni + nbk−1(d− 1)

= ak−1(d− 1)2
(
dn−

(
d+ 1

2

))
+ 2ak−1(d− 1)γ(C) + nbk−1(d− 1)

= (k + 1)φk(n, d) + 2ak−1(d− 1)γ(C).
(15)

From (14) and (15) we get

(1 + k)γk(C) = 2ak−1(d− 1)γ(C) +
n∑
i=1

γk−1(lk (vi, C)). (16)

Repeated applications of formula (16) give (13). The value of wi(k, d) is

wi(k, d) =

{
2(ak−i−1(d− i− 1))/(k + 1)

(
k
i

)
, 0 ≤ i ≤ k − 2,

2/(k + 1)k, i = k − 1.
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Corollary 10.22 (The MPW-reduction) Let d ≥ 2 be an integer. Let C be a simplicial
d-polytope with n vertices, such that γ(lk (S,C)) ≥ 0 for every face S of bdC, |S| < k. Then

1. fk(C) ≥ φk(n, d).

2. If fk(C) = φk(n, d) then γ(C) = 0.

2

Exercise 10.23 Check the details of the above Proposition and Corollary. 2

Kalai [17] discusses the extension of the Lower Bound Theorem to more general classes
of objects.

The important insight of Kalai’s proof is that h2 − h1 is nonnegative for a simplicial
d-polytope, d ≥ 3, because it counts something; namely, the dimension of a certain vector
space. It turns out that hi − hi−1 is also nonnegative, i = 3, . . . , bd/2c as well, and it is
possible to generalize appropriately the notion of stress to capture this result.

10.6 The Stress Polynomial

Suppose we have a stress λ on a d-dimensional framework in Rd with vertices indexed by
1, . . . , n and edges indexed by E. Define λij = 0 if i 6= j, ij 6∈ E. Taking λij = λji if i 6= j,
we define

λjj := −
∑
i:i 6=j

λij, j = 1, . . . , n.

Then define

b(x1, . . . , xn) :=
∑
i,j:i 6=j

λijxixj +
∑
j

λjj
2
x2
j .

This stress polynomial (see Lee [28]) b(x) captures the definition of stress in the following
way. Let M be the (d+ 1)× n matrix

M :=

[
v1 · · · vn
1 · · · 1

]
.

Theorem 10.24 λ is a stress if and only if M∇b = O.
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In this theorem, ∇b(x) := ( ∂
∂x1
b(x), . . . , ∂

∂xn
b(x)), and we are regarding M∇b as a member

of (R[x1, . . . , xn])d+1.

Proof. Starting with the equilibrium conditions for stress,∑
i:i 6=j

λij(vi − vj) = O, j = 1, . . . , n,

∑
i:i 6=j

λijvi +

−∑
i:i 6=j

λij

 vj = O, j = 1, . . . , n,

∑
i:i 6=j

λijvi + λjjvj = O, j = 1, . . . , n.

n∑
i=1

λijvi = O, j = 1, . . . , n.

Also, obviously, ∑
i:i 6=j

λij + λjj = 0, j = 1, . . . , n,

n∑
i=1

λij = 0, j = 1, . . . , n.

Also,
∂

∂xi
b(x) =

n∑
j=1

λijxj, i = 1, . . . , n.

Therefore

M∇b =
n∑
i=1

 n∑
j=1

λijxj

[ vi
1

]

=
n∑
j=1

(
n∑
i=1

λij

[
vi
1

])
xj

=

[
O
0

]
xj

=

[
O
0

]
.
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2

Some remarks:

1. Every nonzero coefficient of the stress polynomial is associated naturally to a certain
face of the framework.

2. The coefficients of the square-free terms uniquely determine the coefficients of the x2
i

terms.

3. If we define the matrix
M :=

[
v1 · · · vn

]
then the condition of Theorem 10.24 can be written as M∇b(x) = O and ωb(x) = 0,
where

ω :=
n∑
i=1

∂

∂xi
.
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11 Simplicial Complexes

Since boundaries of simplicial polytopes provide examples of simplicial complexes, we now
study what we can determine about f -vectors and h-vectors of various classes of simplicial
complexes. Stanley’s book [48] is a good source of material for this section, and provides
further references.

Recall our definitions:
Let V be a finite set. An (abstract) simplicial complex ∆ is a nonempty collection of

subsets of V such that F ⊂ G ∈ ∆ implies F ∈ ∆. In particular, ∅ ∈ ∆. For F ∈ ∆
we say F is a face of ∆ and the dimension of F , dimF , equals card (F ) − 1. We define
dim ∆ := max{dimF : F ∈ ∆} and refer to a simplicial complex of dimension d − 1 as
a simplicial (d − 1)-complex. Faces of dimension 0, 1, d − 2, and d − 1 are called vertices
edges, subfacets or ridges , and facets of ∆, respectively. For simplicial (d − 1)-complex
∆ we define fj(∆) to be the number of j-dimensional (j-faces) of ∆, and its f -vector to
be f(∆) := (f0(∆), f1(∆), . . . , fd−1(∆)), and then use the same equation (5) for simplicial
d-polytopes to define the h-vector of ∆.

Exercise 11.1 Suppose ∆ is a simplicial complex on V = {1, . . . , n}. Prove that there exists
a positive integer e and points v1, . . . , vn ∈ Re such that conv {vi : i ∈ F} ∩ conv {vi : i ∈
G} = conv {vi : i ∈ F∩G}. In this way we can realize any simplicial complex geometrically. 2

11.1 The Kruskal-Katona Theorem

For positive integers a and i, a can be expressed uniquely in the form

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · ·+

(
aj
j

)

where ai > ai−1 > · · · > aj ≥ j ≥ 1. This is called the i-canonical representation of a.

Exercise 11.2 Prove that the i-canonical representation exists and is unique. 2

From this representation define

a(i) =

(
ai
i+ 1

)
+

(
ai−1

i

)
+ · · ·+

(
aj

j + 1

)

where
(
k
`

)
= 0 if ` > k. Define also 0(0) = 0.

Kruskal [21] characterized the f -vectors of simplicial complexes in 1963. Katona [18]
found a shorter proof in 1968. The theorem is also a consequence of the generalization by
Clements and Lindström [10].
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Theorem 11.3 (Kruskal-Katona) The vector (f−1, f0, . . . , fd−1) of positive integers is the
f -vector of some simplicial (d− 1)-dimensional complex ∆ if and only if

1. f−1 = 1, and

2. fj ≤ f
(j)
j−1, j = 1, 2, . . . , d− 1.

Proof. (Sketch.)
Sufficiency: Let V = {1, 2, . . .}. Let V i = {F ⊆ V : |F | = i}. Order the sets in V i

reverse lexicographically . That is, for F,G ∈ V i, F 6= G, define F < G if there exists a k such
that k 6∈ F , k ∈ G, and i ∈ F if and only if i ∈ G for all i > k. (This might more properly
be referred to as co-lex order.) For all j choose the first fj−1 sets of V j. The conditions will
force the resulting collection to be a simplicial complex.

Example:

1 6 13 10
∅ 1 12 123

2 13 124
3 23 134
4 14 234
5 24 125
6 34 135

15 235
25 145
35 245
45 345
16 126
26 136
36 236
46 146
56 246

346
156
256
356
456

Necessity: Given simplicial complex ∆. By application of a certain “shifting” or “com-
pression” operation, transform it to a reverse lexicographic simplicial complex with the same
f -vector. Then verify that the conditions must hold. 2
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Corollary 11.4 f -vectors of simplicial d-polytopes must satisfy the Kruskal-Katonal condi-
tions.

11.2 Order Ideals of Monomials

We will soon see that understanding how to count monomials will help in investigating h-
vectors of certain simplicial complexes. Let X be the finite set {x1, . . . , xn}. An order ideal
of monomials is a nonempty set M of monomials xb11 · · · xbnn in the variables xi such that
m|m′ ∈ M implies m ∈ M . In particular, 1 = x0

1 · · ·x0
n ∈ M . Let hi(M) be the number of

monomials in M of degree i. The sequence h = (h0(M), h1(M), . . .) is called an M-sequence,
or an M-vector if it terminates (h0, . . . , hd) for some d.

For positive a and i, use the i-canonical representation of a to define

a〈i〉 =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · ·+

(
aj + 1

j + 1

)
.

Define also 0〈i〉 = 0.
Stanley [46] (see also [44, 45, 48]) proved the following characterization of M -sequences of

order ideals of monomials, which is analogous to the Kruskal-Katona Theorem, as one piece
of a much larger program in which he established, elucidated and exploited new connections
between combinatorics and commutative algebra.

Theorem 11.5 (Stanley) (h0, h1, h2, . . .), a sequence of nonnegative integers, is an M-
sequence if and only if

1. h0 = 1, and

2. hi+1 ≤ h
〈i〉
i , i = 1, 2, 3, . . ..

Proof. (Sketch.)
Sufficiency: Let M i be the set of all monomials of degree i. Order the monomials in M i

reverse lexicographically. That is, for m,m′ ∈M i, m 6= m′, m = xb11 · · ·xbnn , m′ = x
b′1
1 · · · xb

′
n
n ,

we say m < m′ if there is some k such that bk < b′k and bi = b′i for all i > k. For all i choose
the first hi monomials of M i. The conditions will force the resulting collection to be an order
ideal of monomials.

Example:
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1 3 4 2
1 x1 x2

1 x3
1

x2 x1x2 x2
1x2

x3 x2
2 x1x

2
2

x1x3 x3
2

x2x3 x2
1x3

x2
3 x1x2x3

x2
2x3

x1x
2
3

x2x
2
3

x3
3

Complete details can be found in Billera and Lee [4].
Necessity: Given an order ideal of monomials, “shift” or “compress” it to a reverse

lexicographic order ideal with the same M -sequence. Then verify that the conditions must
hold. The fact that the compression technique results in an order ideal of monomials is
due to Macaulay [30] (hence Stanley’s choice of “M” in “M -sequence”). Clements and
Lindström [10] provide a more accessible proof of a generalization of Macaulay’s theorem. 2

11.3 Shellable Simplicial Complexes

Let ∆ be a simplicial (d− 1)-complex. We say that ∆ is shellable if it is pure (every face of
∆ is contained in a facet), with the property that the facets can be ordered F1, . . . , Fm such
that for k = 2, . . . ,m there is a unique minimal nonempty face Gk of F(Fk) that is not in
Sk−1 := F(F1) ∪ · · · ∪ F(Fk−1). See Exercise 8.9, in which we conclude that for every k,

hi(Sk) =

{
hi(Sk−1) + 1, i = f0(Gk),
hi(Sk−1), otherwise.

Stanley [45, 46] stated the following theorem:

Theorem 11.6 (Stanley) (h0, . . . , hd) ∈ Zd+1
+ is the h-vector of some shellable simplicial

(d− 1)-complex if and only if it is an M-vector.

Proof. We will sketch Stanley’s construction for sufficiency, leaving the necessity of the
conditions for later. I think the construction first appeared in Lee [26]. This type of con-
struction was the core of the combinatorial portion of the proof in [4]. See also [27] for a
slight generalization.
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Let V = {1, 2, 3, . . .}. Let V i be the collection of all subsets F of V of cardinality d
such that 1, . . . , d − i ∈ F but d − i + 1 6∈ F . For all i choose the first hi sets in V i, using
reverse lexicographic order. We claim that these are the facets of ∆, and they are shellable
in reverse lexicographic order. Further, if a chosen F is in V i then it contributes to hi(∆)
during the shelling.

Associate with each facet F = {i1, . . . , id} (i1 < · · · < id) the monomial m(F )
xi1−1xi2−2 · · ·xid−d, where we interpret x0 = 1. Then F ∈ V i if and only if degm(F ) = i.
By the proof of Theorem 11.5, the selected monomials will form an order ideal that is also
closed (within each degree) under reverse lexicographic order. We call such a collection of
monomials a lexicographic order ideal .

Example: d = 3, h = (1, 3, 4, 2). Chosen facets are marked with an asterisk.

m(F ) i 1 2 3 4 5 6
1 0∗ 1 2 3
x1 1∗ 1 2 4
x2

1 2∗ 1 3 4
x3

1 3∗ 2 3 4
x2 1∗ 1 2 5
x1x2 2∗ 1 3 5
x2

1x2 3∗ 2 3 5
x2

2 2∗ 1 4 5
x1x

2
2 3 2 4 5

x3
2 3 3 4 5
x3 1∗ 1 2 6
x1x3 2∗ 1 3 6
x2

1x3 3 2 3 6
x2x3 2 1 4 6
x1x2x3 3 2 4 6
x2

2x3 3 3 4 6
x2

3 2 1 5 6
x1x

2
3 3 2 5 6

x2x
2
3 3 3 5 6

x3
3 3 4 5 6

Let F = {i1, . . . , id} be a facet of V i in ∆. Choose G = F \ {1, . . . , d− i}. It is not hard
to prove that no facet preceding F in reverse lexicographic order contains G.

Choose j > d − i. Find kj := max{k 6∈ F : k < ij} and define Fj := (F \ {ij}) ∪ {kj}.
Obviously F and Fj are neighbors, i.e., share d− 1 elements. Knowing that the monomials
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associated with the facets in ∆ form a lexicographic order ideal, we can also verify that
Fj ∈ ∆ for every j.

From the above analysis it is possible to conclude that G is the unique minimal new face
of F added to ∆ when F is shelled onto the preceding facets of ∆. 2
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12 The Stanley-Reisner Ring

12.1 Overview

To finish the proof of the previous section and show that the h-vector of a shellable simplicial
complex ∆ is an M -vector, we need to show how to construct a suitable order ideal of
monomials from ∆. This is facilitated by certain algebraic tools developed by Stanley. A
good general reference is [48].

Let ∆ be a simplicial (d− 1)-complex with n vertices 1, . . . , n. Consider the polynomial
ring R = R[x1, . . . , xn]. There is a natural grading of R = R0 ⊕ R1 ⊕ R2 ⊕ · · · by degree,
where Ri consists of only those polynomials, each of whose terms have degree exactly i. For a
monomial m = xa11 · · ·xann in R we define the support of m to be supp(m) = {i : ai > 0}. Let
I be the ideal of R generated by monomials m such that supp(m) 6∈ ∆. The Stanley-Reisner
ring or face ring of ∆ is A∆ := R/I. Informally, we do calculations as in R but set any
monomial to zero whose support does not correspond to a face.

The ring A∆ is also graded A∆ = A0 ⊕ A1 ⊕ A2 ⊕ · · · by degree. We will see that∑
dimAit

i = f(∆, t
1−t). Stanley proved that if ∆ is shellable, then there exist d elements

θ1, . . . , θd ∈ A1 (a homogeneous system of parameters) such that θi is not a zero-divisor
in A∆/(θ1, . . . , θi−1), i = 1, . . . , d. Let B = A∆/(θ1, . . . , θd) = B0 ⊕ B1 ⊕ · · · ⊕ Bd. Then∑

dimBit
i = (1− t)df(∆, t

1−t) = h(∆, t). So dimBi = hi, i = 0, . . . , d. Macaulay [30] proved
that there exists a basis for B as an R-vector space that is an order ideal of monomials.
Theorem 11.6 then follows immediately from Theorem 11.5.

The existence of the θi means that A∆ is Cohen-Macaulay and as a consequence h(∆)
is an M -vector. Reisner [37] characterized the class of Cohen-Macaulay complexes, those
simplicial complexes ∆ for which A∆ is a Cohen-Macaulay ring:

Theorem 12.1 (Reisner) A simplicial complex ∆ is Cohen-Macaulay if and only if for all
F ∈ ∆, dim H̃i(lk ∆F,R = 0 when i < dim lk ∆F .

In particular, simplicial complexes that are topological balls (simplicial balls) and spheres
(simplicial spheres), whether shellable or not, are Cohen-Macaulay.

12.2 Shellable Simplicial Complexes are Cohen-Macaulay

Let ∆ be a simplicial (d− 1)-complex with n vertices 1, . . . , n, and consider the ring A∆ =
A0 ⊕ A1 ⊕ A2 ⊕ · · ·.
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Theorem 12.2 (Stanley) The dimension of A` as a vector space over R is H`(∆), where

H`(∆) =


1, ` = 0,

`−1∑
j=0

fj(∆)

(
`− 1

j

)
, ` > 0,

(taking fj(∆) = 0 if j ≥ d).

Proof. We need to show that the number of nonzero monomials of degree ` in A∆ is H`(∆).
Let F be a face of dimension j (hence cardinality j + 1). By Exercise 7.10 the number of

monomials m of degree ` such that supp (m) = supp (F ) is
(
`−1
j

)
. The result now follows

easily. 2

Let T be any d× n matrix such that every d× d submatrix associated with a facet of ∆
is invertible. If ∆ happens to be the boundary complex of a simplicial d-polytope P ⊂ Rd

containing the origin in its interior, then we can take T to be the matrix whose columns are
the coordinates of the vertices of P . For i = 1, . . . , d define θi = ti1x1 + · · · + tinxn ∈ A1.
That is to say, θi is a linear expression whose coefficients can be read off from row i of T .

Theorem 12.3 (Reisner-Stanley) There exist monomials η1, . . . , ηm ∈ A such that ev-

ery member y of A has a unique representation of the form y =
m∑
i=1

piηi, where the pi are

polynomials in the θi.

Proof. We sketch the proof of Kind and Kleinschmidt [19]. Let F1, . . . , Fm be a shelling of
the facets of ∆ and define Sj to be the collection of all faces of ∆ in F1, . . . , Fj, j = 1, . . . ,m.
Define the Stanley-Reisner ring ASj

of Sj in the natural way. We will prove by induction on
j that ASj

has the property of the theorem.
For facet Fj, the columns in T corresponding to the vertices of Fj determine a d × d

submatrix U of T . Multiply T on the left by U−1 to get the matrix T ′. For i = 1, . . . , d
define θ′i := t′i1x1 + · · · + t′inxn ∈ A1. Then the θ′i are linear combinations of the θi and vice
versa since the relations are invertible.

First suppose j = 1. For convenience, suppose F1 contains the vertices 1, . . . , d. Then
xi = 0, i = d + 1, . . . , n and θ′i = xi, i = 1, . . . , d. The elements of AS1 are precisely the
polynomials in the variables x1, . . . , xd. Since xa11 · · ·xadd = θ′a11 · · · θ′

ad
d , choosing η1 = 1 we

can see that every member y of AS1 has a representation of the form y = p′1η1 where p′1
is a polynomial in the θ′i. Transforming back to the θi, p

′
1(θ′1, . . . , θ

′
d) = p1(θ1, . . . , θd), a
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polynomial in the θi. To show that the representation is unique, suppose p1(θ1, . . . , θd) = 0
for some polynomial p1 in the θi. Transforming the θi to θ′i, we have a polynomial p′1 in the
θ′i = xi which equals 0. Therefore p′1, and hence p1, must be the zero polynomial.

Now suppose j > 1. Let Gj be the unique minimal face of Fj that is not present in
Sj−1, and let k := cardGj. For convenience, assume Fj contains the vertices 1, . . . , d and Gj

contains the vertices 1, . . . , k. Let ηj := x1 · · ·xk.
Consider any nonzero monomial m in ASj

that is divisible by ηj. Then the support of
m contains Gj and can therefore consist only of variables from among x1, . . . , xd since all
faces in Sj containing Gj are subsets of Fj. Then m = m′ηj where m′ = xa11 · · ·xadd . It
is now easy to check that m′ηj = θ′a11 · · · θ′

ad
d ηj since upon expanding, all monomials are

divisible by ηj and those containing variables other than x1, . . . , xd are zero in ASj
. From

this, transforming the θ′i to the θi, we can see that m can be expressed in the form pjηj,
where pj is a polynomial in the θi. Since we can handle monomials divisible by ηj, it is
now easy to see that any y ∈ ASj

that is divisible by ηj can be expressed as a product of a
polynomial in the θi and the monomial ηj.

Now consider any y ∈ ASj
such that no monomial in y is divisible by ηj. Then, regarding

y as a member of ASj−1
, y =

j−1∑
i=1

piηi. But this may no longer be true in ASj
since after

expanding the sum there may be some monomials left over that are divisible by ηj, which

were zero in ASj−1
, but not in ASj

. So y =
j−1∑
i=1

piηi +w, where w is divisible by ηj. Now find

a representation for w as in the preceding paragraph.

It remains to show that the representations are unique. Assume that
j∑
i=1

piηi = 0. Setting

all terms divisible by ηj equal to zero, it must be the case that
j−1∑
i=1

piηi = 0 in ASj−1
. So each

of the polynomials p1, . . . , pj−1 is the zero polynomial by induction. Hence pjηj = 0 in ASj
.

Transforming the θi to the θ′i, we have p′jηj = 0 for some polynomial p′j in the θ′i. But for
each term in the expansion, θ′a11 · · · θ′

ad
d ηj = xa11 · · ·xadd ηj, from which one readily sees that

p′j must be the zero polynomial. Transforming the θ′i back to the θi, pj must be the zero
polynomial. 2

The proof given above shows that A∆ is a free module over the ring R[θ1, . . . , θd] and
that η1, . . . , ηm is a monomial basis. Further, there are exactly hi(∆) elements of the basis
of degree i. We can construct another monomial basis in the following way. Order the
monomials lexicographically by defining xa11 · · ·xann < xb11 · · ·xbnn if a1 = b1, . . . , aj = bj but
aj+1 < bj+1. Now choose a basis in a greedy fashion by letting η1 := 1 and ηj be the first
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monomial lexicographically that you cannot represent using η1, . . . , ηj−1. Call the resulting
basis M . It will still have exactly hi(∆) elements of degree i.

Theorem 12.4 The basis M is an order ideal of monomials.

Proof. We need to show that if η is in M then so are all its divisors. For suppose not.
Then there is a divisor m of η that was not chosen. It was considered before η because m < η
(m = m′ηi < m′m = η). It was rejected because m =

∑
piηi for the ηi in M that are less

than m. But η = mm′ for some monomial m′. So η =
∑

pim
′ηi. But m′ηi < η for each i, so

each of these can be expressed in terms of the ηj in M that are less than η. Hence η itself
can be expressed in terms of the preceding ηj in M , contradicting the fact that η is a basis
element. 2

Corollary 12.5 If ∆ is a Cohen-Macaulay simplicial (d− 1)-complex with n vertices, then

hi ≤
(
n− d+ i− 1

i

)
, i = 1, . . . , d.

Proof. There are precisely h1(∆) = n − d monomials of degree one in M . So by Ex-

ercise 7.9 there can be no more than
(
n−d+i−1

i

)
monomials of degree i in M . Therefore

hi ≤
(
n−d+i−1

i

)
. 2

This provides a new proof of the Upper Bound Theorem for simplicial d-polytopes. As
mentioned above, triangulated (d − 1)-spheres S are also Cohen-Macaulay. It is a simpler
fact to prove that the Dehn-Sommerville equations are also satisfied. Using Theorem 12.2
one can show that there must be hi(S) monomials of degree i in a monomial basis for B. This
is done by realizing that a basis for A as a vector space over R is obtained by multiplying
monomials in the θi by elements in the basis M for B. From this one immediately has

Theorem 12.6 (Upper Bound Theorem for Spheres, Stanley) Let S be a triangu-
lated (d − 1)-sphere with n vertices. Then hi(S) ≤ hi(C(n, d)), i = 0, . . . , d, and fj(S) ≤
fj(C(n, d)), j = 0, . . . , d− 1.
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[10] G. F. Clements and B. Lindström, A generalization of a combinatorial theorem of
Macaulay, J. Combinatorial Theory 7 (1969) 230–238.

[11] R. Connelly, A counterexample to the rigidity conjecture for polyhedra, Inst. Hautes
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120-cell, 37
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24-cell, 37
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600-cell, 37
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M -vector, 87
F(P ), 44
F(bdP ), 44
f̂(P, t), 53
ĥ(P, t), 53
a(i), 85
a〈i〉, 87
d-cross-polytope, 36
d-cube, 36, 53, 56
d-simplex, 36
f -vector, 44
f -vector of simplicial complex, 85
f(P, t), 54
f(P3), 47
f(Pd), 44
f(Pds ), 52
h-vector, 64
h-vector of simple polytope, 53
h-vector of simplicial complex, 85
h-vector of simplicial polytope, 54
h(P, t), 54
h(P3

s ), 55
j-simplex, 35
k-neighborly, 70
p-vector, 46
120-cell, 37
16-cell, 37
24-cell, 37

5-cell, 37
600-cell, 37
8-cell, 37

affine combination, 1
affine set, 3
affine span, 4, 57
affinely dependent, 2
affinely independent, 2
alternatives, theorems of the, 14, 15, 23, 24,

26, 27
angle shortfall, 48
antiprism, 38
Archimedean solid, 38, 48

balloon, 62
bar, 72
Barnette, 71
Bellows theorem, 78
beyond, 64
Billera, 71, 88
binding inequality, 10
bipartite perfect matching polytope, 39
bipyramid, 50, 56
boundary, 59
bounded subset, 9
Brückner, 71
Bruggesser, 61

canonical representation, 85
Carathéodory’s Theorem, 6
Cauchy, 77
characteristic vector, 38
characterization, good, 15, 24
Clements, 85, 88
closed star, 78
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co-lex order, 86
Cohen-Macaulay complex, 91
Cohen-Macaulay ring, 91
combinatorial optimization, 38
combinatorially equivalent, 32
complete bipartite graph, 39
compress, 86, 88
cone, 3, 4
Connelly, 78
convex combination, 1
convex hull, 4
convex set, 3
cross-polytope, 36, 37, 56
cube, 36, 37
cyclic polytope, 56, 57, 66

Dehn, 60, 77
Dehn-Sommerville Equations, 52, 94
Descartes, 44
Dijkstra’s Algorithm, 41
dimension, 30, 85
dipath polytope, 41
dodecahedron, 37
dual polytope, 32, 34

edge, 30, 85
equations, systems of, 14
equilibrium, 76
Euler, 44
Euler hyperplane, 48
Euler’s Relation, 44, 48, 55, 63, 64
extendably shellable, 65

face, 30, 85
face lattice, 32
face ring, 91
face, improper, 30
face, proper, 30
facet, 30, 85

Farkas Lemma, 27, 33
flag, full, 36
flexible sphere, 78
four-dimensional simplex, 37
Fourier-Motzkin elimination, 13, 16, 22, 25,

26
framework, 72

Gale, 68
Gale diagram, 42
Gale transform, 42
Gale’s evenness condition, 68
Gaussian elimination, 14
good characterization, 15, 24
Grünbaum, 48
Gram’s Theorem, 51, 64
graphic matroid, 40
great dodecahedron, 37
great icosahedron, 37
great stellated dodecahedron, 37
greatest integer function, 54
Greedy Algorithm, 40

H-polyhedron, 9
H-polytope, 9–11, 13
halfspace, closed, 8
halfspace, open, 8
Hamilton cycle, 41
Helly’s Theorem, 8
homogeneous system of parameters, 91
homology, 46
hypercube, 37
hyperplane, 8

icosahedron, 37
indegree, 52
independent set, 40
infinitesimal motion, 72
infinitesimal motion of Rd, 73
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infinitesimally rigid, 73
irredundant, 31
irredundant system, 25
isometry, 36

joint, 72

Kalai, 71, 80, 82
Katona, 85, 86
Kepler-Poinsot solids, 37
Kind, 92
Klee, 60
Kleinschmidt, 92
Kruskal, 85, 86
Kruskal-Katona Theorem, 85

Lawrence, 51
least integer function, 69
Lee, 71, 82, 88
lexicographic order, 93
lexicographic order ideal of monomials, 89
Lindström, 85, 88
line shelling, 63
linear combination, 1
linear equation, 8
linear inequalities, systems of, 14, 25
linear inequality, 8
linear matroid, 40
linear programming, 39
linear span, 4
linearly dependent, 1
linearly independent, 1
link, 80
Lower Bound Theorem, 71
lower interval, 35

Macaulay, 88, 91
Mani, 61
matching, 39

matching polytope, 39
matroid, 40
matroid polytope, 40
McMullen, 60, 66, 67, 80
Minkowski’s Theorem, 11
moment curve, 66
monomials, 55
motion, 72
motion space, 72
Motzkin, 67
MPW reduction, 80

neighborly polytope, 67
nonbinding inequality, 10
nonnegative combination, 1
nullspace, 11

octahedron, 37
order ideal of monomials, 87
outdegree, 52

Pascal’s triangle, 56
perfect matching, 39
Perles, 80
planar graph, 44
Platonic solid, 47
Platonic solids, 36
Poincaré, 48
polar, 32
polar dual, 34
polar polytope, 32
polymake, 13
polytopal, 35
polytope, 1
prism, 38
pure, 61, 88
pyramid, 50

Radon’s Theorem, 7, 43
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rank, 40
redundant, 31
regular 2-polytopes, 36
regular 3-polytopes, 36
regular 4-polytope, 37
regular 4-simplex, 37
regular d-polytope, 38
regular polytope, 36
regular simplex, 36
regular solid, 47
Reisner, 91, 92
reverse lexicographic order, 86–89
ridge, 30, 85
rigid, 72
rigidity, 72
rocket, 62
Roth, 77

Sabitov, 78
Schläfli, 48
Schläfli symbol, 36
Schlegel diagram, 42
Schlegel transform, 42
self dual, 34
semiregular polytope, 36, 38
semiregular solid, 48
shellable simplicial complex, 88, 91
shelling, 45, 48, 61, 88, 91
Shemer, 68
Shephard, 66
shift, 86, 88
simple polytope, 35
simplex, 35, 36, 56, 61, 70, 73
simplicial ball, 59, 91
simplicial complex, 85
simplicial polytope, 35, 52
simplicial sphere, 59, 91
slack inequality, 10

small stellated dodecahedron, 37
Sommerville, 60
stacked polytope, 56, 66, 71
Stanley, 56, 60, 85, 87, 88, 91, 92, 94
Stanley-Reisner ring, 91
Steinitz, 71
stress, 76
stress matrix, 76
stress polynomial, 82
stress space, 76
subfacet, 30, 85
subspace, 3
supporting hyperplane, 30
symmetry, 36
systems of equations, 14
systems of linear inequalities, 14, 25

tetrahedron, 37
theorems of the alternatives, 14, 15, 23, 24,

26, 27
tight inequality, 10
torus, 44
traveling salesman polytope, 41
trivial infinitesimal motion, 73
trivial motion, 72
truncated icosahedron, 47

unbounded simple polyhedron, 60
Upper Bound Theorem, 66, 94
upper interval, 35

V-polytope, 1, 7, 10, 11, 13
vertex, 11, 28, 30, 85
vertex figure, 36, 49, 58
visible, 64

Walkup, 60, 80
Walz, 78
Weyl’s Theorem, 13
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Whiteley, 78

Ziegler, 65
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