Kelcy Monday

HON 301, Lee

April 15, 2005

I played around with several ideas when thinking for a topic for my Visualizing Mathematics project. Some included the visualization of a proof such as a Pascal’s Problem of Points or an investigation into the recurrence of mathematical patterns in nature, like those proposed by Fibonacci, but it was not until I decided to apply my programming skills that I found a topic that was truly interesting to me. I finally decided to write a C++ program that would calculate the new vertices of orthogonally projected polyhedron and export the necessary data to a rendering program such as POV-Ray. The initial goal was to create a program which used vital input data like vertex points, initial and final projection dimensions, and a projection plane to produce the necessary data to create source code to be used in POV-Ray to render a visualization of the new projection. In this paper, I will discuss the procedure, problems, and insights I came upon in the process of writing this program.
The majority of the program consists of simple computations such as storing data in arrays and matrices and modifying that data by cross-products or dot-products. The difficulty came when trying to influence a computer program to perform functions which are aided in common sense when carried out by a human or functions which had to be universalized to many dimensions and many types of polyhedron. One of these functions included determining which pairs of vertices are connected by edges. Another involved creating a simple way to rearrange and modify a set of data.
Possibly the most difficult calculation of this program was to find a way to distinguish which of the vertex points are connected by edges. After much trial and error, it became obvious that one of the defining characteristics of any regular polyhedron is that every edge length is identical. Upon this realization I implemented a rule in inputting data which states that the first two vertex points entered by the user must be connected by and edge. I then created a function
 which calculated the length between every vertex point and compared it to the distance between the first two points. If the distance was equivalent, then the points must be connected by an edge. I then created a new list of points
 which listed every edge as a pair of points which connected them.
It became apparent from the beginning that matrices would become an integral component of the program. Matrices have many advantages over arrays, such as the ability to group sets of values like the different elements of a vector, whereas an array is just a one column list of values. In C++, matrices offer the capability of modifying an entire row (vector), whereas an array can only be modified as a whole or by a single value. One common problem, however, shared by both matrices and arrays is their somewhat inflexible state. In order to re-arrange values within, one must apply a somewhat complex algorithm. After experimenting with different sorting algorithms, it became apparent that it would take an extremely complex set of code to allow matrices, which would initially be dependent on several variables, to be modified and sorted in different ways. It was at this point when I decided to transport my core data to a useful, but advanced data structure called a linked list
. A linked list is simply a chain of structures which contain a pointer to the next element. The data is not actually stored in a fixed structure as in a matrix or array, but each value is stored in a separate location in memory. The values are connected with the linked list which has pointer values that give a location for the next value in the list. This sort of structure easily allows values to be inserted in any space within the list and values to be moved within the list.
Once the core data was imported into the linked list, I was able to apply a cross-product function
 to find orthogonal direction vectors for the projection, a unit vector function
 which calculates the direction vector with length one, and a dot-product function
 to calculate the vertex points once projected onto the new Cartesian plane. The cross-product function had to be constructed in such a way as to be applicable to both three and four dimensions. Cross-products for both three and four dimensions have fairly simple algorithms, as can be seen within the program code. Once orthogonal projection vectors were found, I created a loop that took the cross product of the vertex points and the projection vectors and input these new points into a new matrix. This matrix, along with some vital POV-Ray code was exported to a data file
 which could be input into POV-Ray by use of an include file which mimics a system file for the editor. From this a rendering of the projected polyhedron can be produced.
After about a week of working on this project, I realized that I may have gotten involved with something a little over my head, however, it has proven to be a great learning experience. I have gained a much greater knowledge of the theory behind orthogonal projections, as well as a greater understanding of some more complex structures of C++. I will include the source file, the template POV-Ray file, and some images I have produced with the program.
� Projection source file, line 28

� Projection source file, line 264

� Projection source file, line 260

� Projection source file, line 70, line 355

� Projection source file, line 62

� Projection source file, line 46

� Projection source file, line 485

