A Very Short List of Examples of Maple commands

Maple can be used to do many-digit arithmetic

Exponentiation

 > 2^100;

Factorials

 > 100!;

Roots

 > sqrt(2);

Floating point evaluation to specified number of digits

 > evalf(sqrt(2),25);

Maple can work with algebraic expressions

Multiplying polynomials

 > expand((3-4*x)^5);

Factoring polynomials

 > factor(x^100-1);

Solving equations (including the complex solutions)

 > solve(x^3=8);

 > solve(a*x^2+b*x+c=0,x);

Simplifying expressions

 > (x^2-4)/(x-2);

 > simplify((x^2-4)/(x-2));

Maple can plot functions

Functions of one variable

 > plot(sin(x)+cos(x/2), x=-10..10);

Functions of two variables.  After plotting, you can click and rotate it.

 > plot3d(x^2+y^3,x=-2..2,y=-2..2);

Maple can carry out calculus computations

 > diff(x^10+sin(x)+sec(x),x);

 > integrate(x^10+sin(x)+sec(x),x);

 > integrate(x^3,x=0..3);

Maple can work with matrices

 > with(LinearAlgebra):

 > A:=Matrix([[1,2,3],[4,5,6]]);

 > B:=Matrix([[7,8],[9,10],[11,12]]);

 > Multiply(A,B);

Rotation matrix for 30 degrees

 > Matrix([[cos(30*Pi/180),-sin(30*Pi/180)],[sin(30*Pi/180),cos(30*Pi/180)]]);

 > A:=Matrix(4,3,symbol=M);

 > B:=Matrix(3,2,symbol=N);

 > Multiply(A,B);

Maple can plot polyhedra.  After plotting you can click and rotate it.

 > with(plots):

 > p1:=[1,1,0]; p2:=[-1,1,0]; p3:=[-1,-1,0]; p4:=[1,-1,0]; p5:=[0,0,5];

 > polygonplot3d([[p1,p2,p3,p4],[p1,p2,p5],[p2,p3,p5],[p3,p4,p5],[p4,p1,p5]],scaling=constrained);

 >

Maple TM is a registered trademark of Waterloo Maple Inc.
Math rendered by WebEQ