\qquad
\qquad

1. Which expression is equal to $x^{2}+12 x+31$? HINT: Complete the square.

Possibilities:

(a) $(x+6)^{2}-5$
(b) $(x+6)^{2}$
(c) $(x+12)^{2}$
(d) $(x+12)^{2}+31$
(e) $(x+6)^{2}+5$
2. The area of the shaded region is 216 square feet. Find a.

Possibilities:

(a) $6 \sqrt{6}$ feet
(b) 12 feet
(c) 24 feet
(d) $6 \sqrt{2}$ feet
(e) 18 feet

3. Which of the following ALWAYS produces an equivalent equation?

Possibilities:

(a) Multiplying both sides of an equation by 9 .
(b) Dividing both sides of the equation by x.
(c) Squaring both sides of an equation.
(d) Multiplying both sides of an equation by $x+9$.
(e) Taking the absolute value of both sides of an equation.
4. Find all real solutions or state that there are NONE.

$$
\sqrt{x+2}=x+5
$$

5. Find all real solutions or state that there are NONE.

$$
(x+2)^{4}+10=-6
$$

6. Solve the equation for a.

$$
-7 x-49=2+a .
$$

7. Find the slope of the line through the points $(-1,4)$ and $(11,-6)$.
8. The endpoints of a diameter of a circle are $A(8,-9)$ and $B(-5,7)$. Find the center of the circle.

Possibilities:

(a) $(0,5 \sqrt{17})$
(b) $(13 / 2,-8)$
(c) $(-13 / 2,8)$
(d) $(5 \sqrt{17}, 0)$
(e) $(3 / 2,-1)$
9. Find all real solutions or state that there are NONE.

$$
x^{3}+5=13
$$

10. Find all real solutions or state that there are NONE.

$$
\frac{x-6}{4}=-9
$$

11. Find all real solutions.

$$
x^{3}+12 x^{2}+25 x+200=4 x^{2}
$$

Possibilities:

(a) $x=-8$
(b) $x=5$ and $x=8$
(c) $x=5$ and $x=-5$
(d) $x=8$
(e) $x=5, x=-5$, and $-x=8$
12. How many solutions are there for each equation?
(I) $(x-2)^{3}=3$
(II) $(x+5)^{2}=1$

Possibilities:

(a) Equation (I) has 3 solutions, and equation (II) has 2 solutions.
(b) Equation (I) has no solutions, and equation (II) has no solutions.
(c) Equation (I) has 3 solutions, and equation (II) has 1 solution.
(d) Equation (I) has 1 solution, and equation (II) has 2 solutions.
(e) Equation (I) has 1 solution, and equation (II) has no solutions.
13. Find the perimeter of the parallelogram ABCD with vertices $\mathrm{A}(1,4), \mathrm{B}(18,4), \mathrm{C}(21,8)$, and $\mathrm{D}(4,8)$.

Possibilities:

(a) 44 units
(b) 34 units
(c) 68 units
(d) 42 units
(e) 378 units
14. A circle has a diameter with endpoints $(16,2)$ and $(4,-8)$. Find an equation for the circle.

Possibilities:
(a) $(x-10)^{2}+(y+3)^{2}=\sqrt{61}$
(b) $(x-6)^{2}+(y-5)^{2}=61$
(c) $(x+10)^{2}-(y-3)^{2}=61$
(d) $(x-6)^{2}+(y-5)^{2}=\sqrt{61}$
(e) $(x-10)^{2}+(y+3)^{2}=61$
15. Find all real solutions or state that there are NONE.

$$
-4 x+16=-5 x+3
$$

16. Find the y-intercept of the graph of $y=2 x^{7}-493 x^{5}+969$.
17. Solve the equation for a.

$$
P=4 a+5 b .
$$

18. Find all the solutions of the equation.

$$
|x+4|=8
$$

Possibilities:

(a) The only solution is $x=4$.
(b) There are exactly two solutions: $x=4$ and $x=-4$.
(c) The only solution is $x=-12$.
(d) There are exactly two solutions: $x=4$ and $x=-12$.
(e) The equation does not have any solutions.
19. Find the area of the triangle with vertices $A(-2,3), B(15,3)$, and $C(3,6)$.

Possibilities:

(a) 51 square units
(b) 54 square units
(c) $51 / 2$ square units
(d) $17+3 \sqrt{17}+\sqrt{34}$ square units
(e) 90 square units
20. Find all real solutions or state that there are NONE.

$$
x^{2}+18 x+63=2 x
$$

21. TRUE or FALSE: The line through the points $(1,1)$ and $(4,-5)$ is perpendicular to the line through the points $(-9,-1)$ and $(-15,-4)$.
22. Find an equation for the line through the points $(-2,2)$ and $(7,11)$.

Possibilities:

(a) $y-2=-\frac{9}{9}(x-2)$
(b) $y-2=\frac{9}{9}(x+2)$
(c) $y+2=\frac{9}{9}(x-2)$
(d) $y-11=-\frac{9}{9}(x-7)$
(e) $y-7=\frac{9}{9}(x-11)$
23. Find all real solutions or state that there are NONE.

$$
x^{4}-10 x^{2}+9=0 .
$$

24. Simplify.

$$
(5 x+6)(2 x-5)-16 x-56
$$

Possibilities:

(a) $10 x^{2}-13 x-22$
(b) $17 x+3$
(c) $10 x^{2}-29 x-86$
(d) $10 x-38$
(e) $10 x^{2}-29 x+26$
25. Find all real solutions or state that there are NONE.

$$
x^{2}+3 x-20=8
$$

26. Find all real solutions or state that there are NONE.

$$
\frac{2}{x+8}+\frac{5}{x-9}=\frac{3}{x^{2}-x-72} .
$$

27. Find all real solutions or state that there are NONE.

$$
x^{3}+x+1=x+28 \text {. }
$$

28. Solve.

$$
\frac{2}{x}+\frac{7}{x-8}=0
$$

Possibilities:

(a) $-8 / 5$
(b) $-16 / 5$
(c) $8 / 9$
(d) $56 / 9$
(e) $16 / 9$
29. Which of the following equations are linear equations?
(I) $y=\frac{7}{x+2}$
(II) $y-3=9(x-2)$
(III) $y=\pi x-2$

Possibilities:

(a) Only equation (II) is linear.
(b) None of the equations are linear.
(c) Only equations (I) and (II) are linear
(d) All of the equations are linear.
(e) Only equations (II) and (III) are linear
30. The distance from x to 6 is 4 . Which of the following equations represents this fact?

Possibilities:
(a) $|x-6|=4$
(b) $|x+6|=4$
(c) $|x+4|=6$
(d) $|x-4|=6$
(e) $|x|=10$
31. Find all real solutions or state that there are NONE.

$$
(x-1)^{2}-6 x=(x-7)^{2}+3
$$

32. Find all real solutions.

$$
x^{3}+6 x^{2}+x-6=2 x
$$

Possibilities:

(a) $x=1$ and $x=6$
(b) $x=1$ and $x=-6$
(c) $x=-6$
(d) $x=1, x=-1$, and $x=-6$
(e) $x=1, x=-1$, and $x=6$
33. Find an equation for the line that is perpendicular to $y=\frac{5}{6} x+6$ and contains the point $(0,12)$.
34. How many solutions does the equation have?

$$
-3 x^{2}+12 x=-3
$$

35. Find all real solutions.

$$
x=2 x^{2}
$$

Possibilities:

(a) $x=0$ and $x=\frac{1}{2}$
(b) $x=0$ and $x=2$
(c) $x=0$
(d) $x=\frac{1}{2}$
(e) $x=2$
36. Find all the solutions of the equation.

$$
|2 x+18|+1=11
$$

Possibilities:

(a) There are exactly two solutions: $x=-4$ and $x=4$.
(b) The only solution is $x=-4$.
(c) The only solution is $x=-14$.
(d) There are exactly two solutions: $x=-4$ and $x=-14$.
(e) The equation does not have any solutions.
37. In the picture below, the graph of an equation involving x and y is shown. Find the true statement.

Possibilities:

(a) $(-3,-4)$ is a solution to the equation.
(b) $(4,5)$ is a solution to the equation.
(c) $(2,-1)$ is a NOT solution to the equation.
(d) $(-3,-4)$ is a NOT solution to the equation.
(e) $(-4,-3)$ is a solution to the equation.

