1. Which expression is equal to $x^2 + 12x + 31$? HINT: Complete the square.

Possibilities: coefficient is one+600. $x^2 + 12x + 31$? HINT: Complete the square. $x^2 + 12x + 31$? $x^2 + 12x + 31$? x + 12x + 31? x + 1

Need
$$\left(\frac{b}{a}\right)^2 = \left(\frac{1a}{a}\right)^2 = 6^2 = 36$$

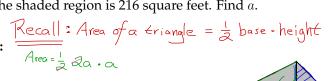
(a)
$$(x+6)^2-5$$

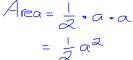
(b)
$$(x+6)^2$$

$$- \left(\frac{12}{2} \right)^{2}$$

$$\frac{(a) (x+6)^{2}-5}{(b) (x+6)^{2}} = \left(x^{2} + [2x + 36] - 36 + 3\right)$$

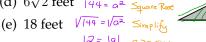
$$(c) (x+12)^{2} = \left(x + \frac{12}{2}\right)^{2} - 5$$
Perfect Square factors to $(x + \frac{b}{2})^{2}$

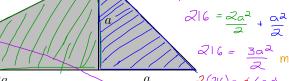

$$(d) (x+12)^{2} + 31 = \left(x+6\right)^{2} - 5$$


(d)
$$(x+12)^2+3$$

(e)
$$(x+6)^2+5$$

2. The area of the shaded region is 216 square feet. Find *a*.


Possibilities:



(a)
$$6\sqrt{6}$$
 feet

(c) 24 feet
$$\frac{432}{3} = \frac{3a^2}{3}$$
 Simplify
(d) $6\sqrt{2}$ feet $|44 = a^2]$ Square Root

Total Area = a2+ 1 a2

- 2a12= 19 a≥0 since a represents
- 3. Which of the following ALWAYS produces an equivalent equation? Suppose **Possibilities:**

 - (e) Taking the absolute value of both sides of an equation. $4 \times 2 = -1$

$$|X^2| = |-||$$

$$|X^2| = |-||$$

$$\chi^2 = \frac{1}{50} \times = \pm 14 + \xi \omega 0$$

4. Find all real solutions or state that there are NONE.

$$\sqrt{x+2} = x+5$$
. No Real Solutions work on Next page

5. Find all real solutions or state that there are NONE.

$$(x+2)^4 + 10 = -6$$

6. Solve the equation for a.

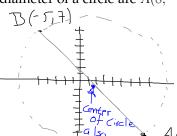
$$-+x-5| = C_1$$

$$-7x-49=2+a.$$
 Subtract 2 so $\boxed{\alpha=-7x-51}$

$$-7x-49-2=2+a-2 \cdot S_{impli} \cdot f_{ij}$$

-7x - 49 = 2 + a. Subtract 2 = 7x - 51 -7x - 49 = 2 + a. Subt

8. The endpoints of a diameter of a circle are A(8, -9) and B(-5, 7). Find the center of the circle.



(b)
$$(13/2, -8)$$

(c)
$$(-13/2, 8)$$

(d)
$$(5\sqrt{17},0)$$

(e)
$$(3/2, -1)$$

$$\text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

$$= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

$$= \left(\frac{3}{2} - \frac{3}{2}\right) =$$

9. Find all real solutions or state that there are NONE.

$$2^{3}+5=8+5=13 \odot Good!$$

$$X=2 \text{ is the only real solution}$$

$$x^3 + 5 = 13$$
 Subtract 5 $\sqrt[3]{x^3} = \sqrt[3]{8}$ Simplify $x = 2$ Check

10. Find all real solutions or state that there are NONE.

$$-\frac{30-\zeta}{4} = -\frac{3\zeta}{4}$$

$$\frac{x-6}{4} = -9. \quad \text{Multiply by }$$

$$(x-6) = 4(-9) \quad \text{Simplify}$$

$$6 + 6 = -36 + 6$$
 Simplify $X = -30$ Check

11. Find all real solutions.

$$x^{3} + 12x^{2} + 25x + 200 = 4x^{2}$$
 Subtract $4x^{2}$ $x^{3} + 12x^{2} + 25x + 200 - 4x^{2} = 4x^{2} - 4x^{2}$ Simplify

Possibilities:

(a)
$$x = -8$$

(b)
$$x = 5$$
 and $x = 8$

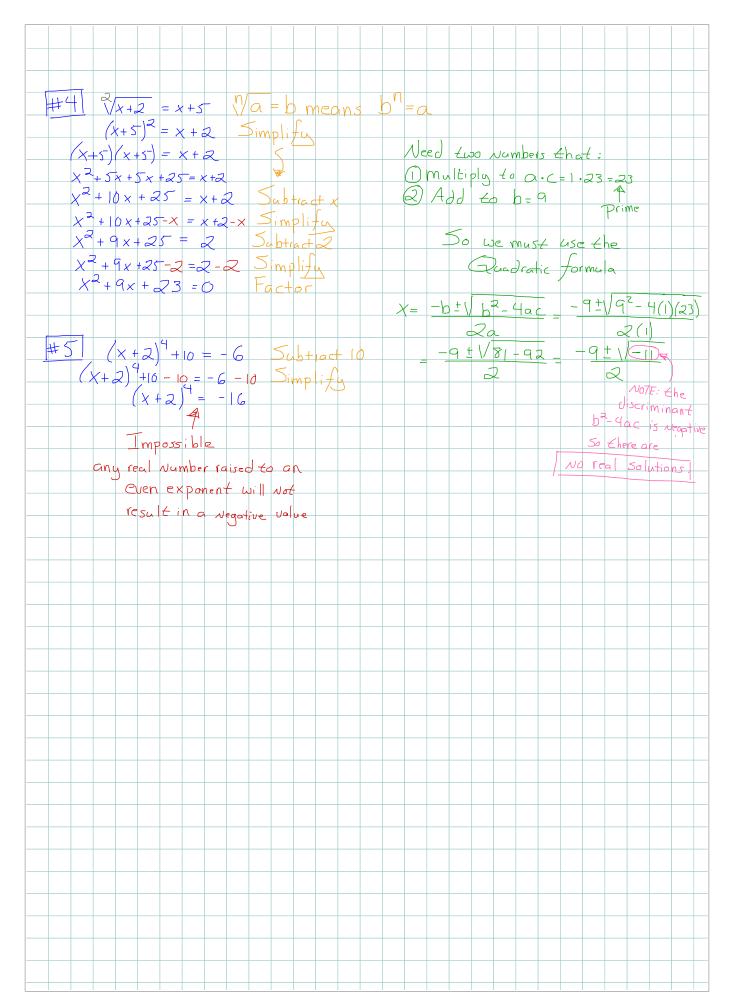
(c)
$$x = 5$$
 and $x = -5$

(d)
$$x = 8$$

(e) $x = 5$, $x = -5$, and $-x = -5$

$$\times^3 + 8 \times^2 + 25 \times + 200 = 0$$

$$x^{3}+8x^{2}+25x+200=0$$
 Factor by graping


$$\chi^{2}(x+8)+25(x+8)=0$$

(e)
$$x = 5$$
, $x = -5$, and $-x = 8$ $(x+3)(x+3) = 0$ Zero Product Rule

$$(-8)^{3} + |2(-8)^{2} + 25(-8) + 200 \stackrel{?}{=} 4(-8)^{2}$$

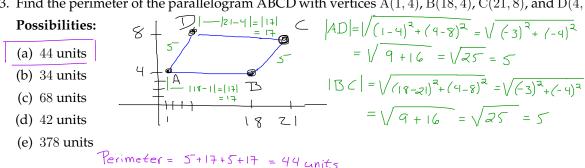
$$-5|2 + |2(64) - 200 + 200 \stackrel{?}{=} 4(64)$$

$$-5|2 + |6|8 \stackrel{?}{=} 256$$

12. How many solutions are there for each equation?

Possibilities:

Note: add exponent


(I)
$$(x-2)^3=3$$

One
$$x-2=\sqrt[3]{3}$$

Solution
$$x+5=\pm \sqrt[3]{3}$$

$$x+5=\pm \sqrt[3]{3}$$

- (a) Equation (I) has 3 solutions, and equation (II) has 2 solutions. $\chi = -5 \pm 1$
- (b) Equation (I) has no solutions, and equation (II) has no solutions. x = -4 and x = -6
- (c) Equation (I) has 3 solutions, and equation (II) has 1 solution.
- Two Solutions
- (d) Equation (I) has 1 solution, and equation (II) has 2 solutions.
- (e) Equation (I) has 1 solution, and equation (II) has no solutions.
- 13. Find the perimeter of the parallelogram ABCD with vertices A(1, 4), B(18, 4), C(21, 8), and D(4, 8).

14. A circle has a diameter with endpoints (16,2) and (4,-8). Find an equation for the circle. Standard Form for Equation

Possibilities:
$$(x-h)^2 + (y+3)^2 = \sqrt{61} = (x_1 + x_2 + x_3 + x_4 + x_$$

(c)
$$(x+10)^2 - (y-3)^2 = 61$$
 radius = distance from center to any endpoint

(d)
$$(x-6)^2 + (y-5)^2 = \sqrt{61}$$

(e) $(x-10)^2 + (y+3)^2 = 61$

$$= \sqrt{(10-16)^2 + (-3-2)^2} = \sqrt{(-6)^2 + (-5)^2} = \sqrt{36+25}$$

$$(e) (x-10)^{2} + (y+3)^{2} = 61$$

$$= \sqrt{(10-16)^{2} + (-3-2)^{2}} = \sqrt{(-6)^{2} + (-5)^{2}} = \sqrt{36+25}$$

$$= \sqrt{61}$$

15. Find all real solutions or state that there are NONE.

$$-4x + 16 = -5x + 3$$
. Subtract 16
- $4x + 16 - 16 = -5x + 3 - 16$ Simplify

$$-4x+16-16=-5x+3-16 \quad Simplify$$

$$-4(-13)+16=-5(-13)+3 \qquad -4x=-5x-13 \quad Add \quad 5x$$

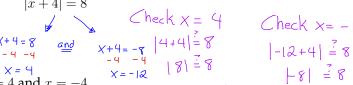
$$5x+16=65+3 \qquad -4x+5x=-5x-13+5x \quad Simplify$$

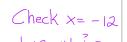
$$68=68 \quad \odot \qquad \qquad X=-13 \quad Check$$

$$Consequently \quad x=-13 \quad is the \qquad 3$$

	4-intercept occ				
16. Find the y-intercept of the graph of $y = 2x^7 - 493x^5 + 969$.	50 <u>4</u> =2(0)7-	4931	(o) ⁵ +969	= 9 4	.9
	So the y-intercept	· is	(0,969)	or	969

17. Solve the equation for a.

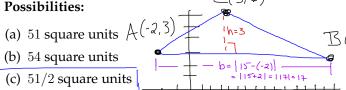

$$P-5b=4a \quad Divide by 4$$

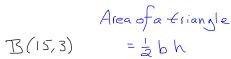

$$P=4a+5b. \quad \leq ab+rad+5b \quad \frac{P-5b}{4} = \frac{4a}{4} \quad \leq implify$$

$$P-5b=4a+5b-5b \quad \leq implify \quad a=\frac{P-5b}{4}$$

18. Find all the solutions of the equation.

Possibilities:




(a) The only solution is x = 4.

(b) There are exactly two solutions: x = 4 and x = -4

- (c) The only solution is x = -12.
- (d) There are exactly two solutions: x = 4 and x = -12.
- (e) The equation does not have any solutions.
- Consequently x=4 and x=-12 are both solutions
- 19. Find the area of the triangle with vertices A(-2,3), B(15,3), and C(3,6).

Possibilities:



(d)
$$17 + 3\sqrt{17} + \sqrt{34}$$
 square units

- (e) 90 square units
- 20. Find all real solutions or state that there are NONE.

$$x^2 + 18x + 63 = 2x.$$

 $\times = -7$ and $\times = -9$ See work on Next page 21. TRUE or FALSE: The line through the points (1,1) and (4,-5) is perpendicular to the line through the points (-9, -1) and (-15, -4).

Slope |= m| =
$$\frac{4z-2}{x_z-x_1} = \frac{-5-1}{4-1} = \frac{-4}{3} = -2$$
 Note $\pm m_1 = \pm \frac{1}{2} = m_2$

Slope 2 =
$$m_2 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - (-1)}{-15 - (-9)} = \frac{-4 + 1}{-15 + 9} = \frac{-3}{-6} = \frac{1}{2}$$

#20	>	X X Z X	+ <	ζχ -	+6	3 -	2 x	· = c	(2 x	<u> </u>	Sub *	tra Sii	c+ np	2. lifu	×												
)isc									62.				3)												
	(.	Zuo	id sa	atic	<u> </u>	orm	ru lo		X =	<u>- b</u>	± \/	/b²	- ५ ८	т с т с		- 16	, ± \ 2(1	/ 4	- =	· 1 <u>6</u>	+ <i>i</i> Z	2 =					
			The	ck	X		-		=	-10	; + ; Z	2 _	-	1 <u>4</u> 2			a k				16-	2 =		2		9	
			(-7	.)	+ {	} (-	7).	+ 6 3	3 =	7	Z(- 14	ㅋ)		(-	, -9)	2 +	18(.	-9)	+	63	? = 0	2(· 18	- 9)				
											14													j			
		on S	req.	CAER	+14	X .		- is	<u> </u>	_ Sc	luti	on				ons	egi T	леү	L lu		<i><=</i>	-4	is	a s	50 lu	utic	1/A

22. Find an equation for the line through the points
$$(-2, 2)$$
 and $(7, 11)$.

(a)
$$y-2=-\frac{9}{9}(x-2)$$

(b)
$$y-2 = \frac{9}{9}(x+2)$$

$$(c)$$
 $y+2=\frac{9}{9}(x-2)$

(b)
$$y - 2 = \frac{9}{9}(x + 2)$$

(c) $y + 2 = \frac{9}{9}(x - 2)$

(d) $y = 11$
 $y = 2$
 $y = 2$

(d)
$$y - 11 = -\frac{9}{9}(x - 7)$$

$$y - 7 = \frac{9}{2}(x - 11)$$

(d)
$$y-11=-\frac{9}{9}(x-7)$$
 Using point (-2,2) yields $y-2=\frac{9}{9}(x-11)$ See the $y-7=\frac{9}{9}(x-11)$ Using Point (7,11) yields $y-11=\frac{9}{4}(x-7)$ answer $y-11=\frac{9}{4}(x-7)$

23. Find all real solutions or state that there are NONE.

The real solutions are
$$X=1, X=-1, X=3$$
 and $X=-3$

$$x^4 - 10x^2 + 9 = 0.$$

24. Simplify.

$$(5x+6)(2x-5)-16x-56$$
 Distribute (FOIL)

$$\frac{10x^{2}-25x+12x-30-16x-56}{=} = \frac{\text{Combine like terms}}{=}$$

$$10x^{2}-29x-86$$

(a)
$$10x^2 - 13x - 22$$

(b)
$$17x + 3$$

Possibilities:

(c)
$$10x^2 - 29x - 86$$

(d)
$$10x - 38$$

(e)
$$10x^2 - 29x + 26$$

25. Find all real solutions or state that there are NONE.

$$x^2 + 3x - 20 = 8.$$

$$X=-7$$
 and $X=4$

26. Find all real solutions or state that there are NONE.

$$\frac{2}{x+8} + \frac{5}{x-9} = \frac{3}{x^2 - x - 72}$$

27. Find all real solutions or state that there are NONE.

University Of Kentucky > College Algebra Fall 2014

$$\frac{\langle heck \rangle}{3^3 + 3 + 1} = \frac{3}{3} + 28$$

$$\frac{3^3 + 3 + 1}{2^3 + 3 + 1} = \frac{3}{3} + 28$$

$$\frac{3^3 + x + 1}{4^3 + 1} = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

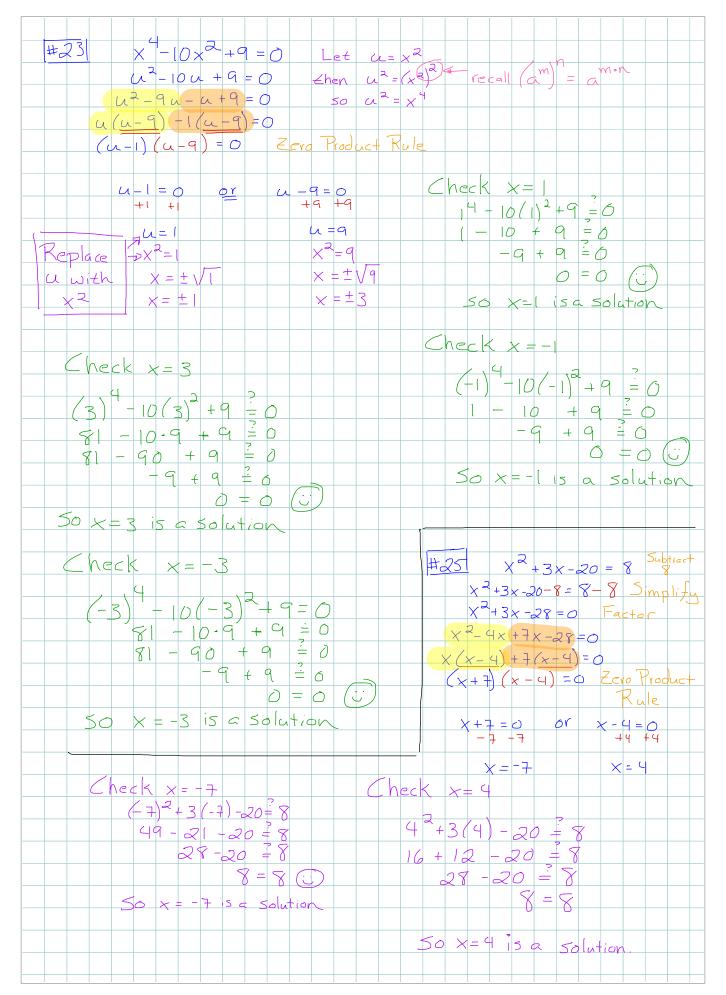
$$\frac{3}{4} + x + 1 = x + 28.$$

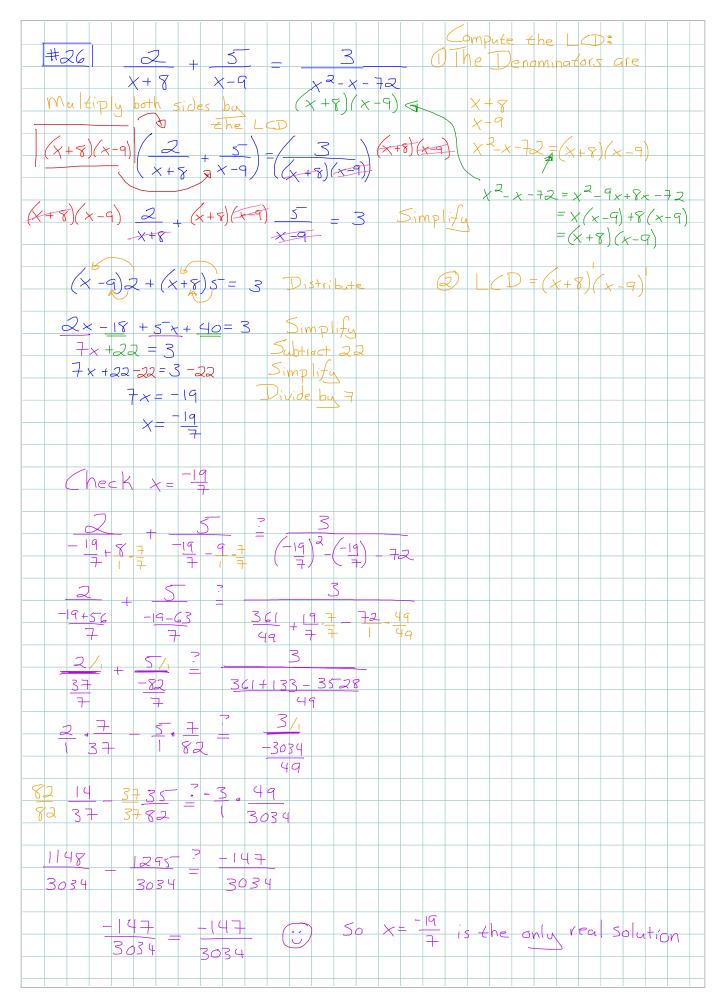
$$\frac{3}{4} + x + 1 = x + 28.$$

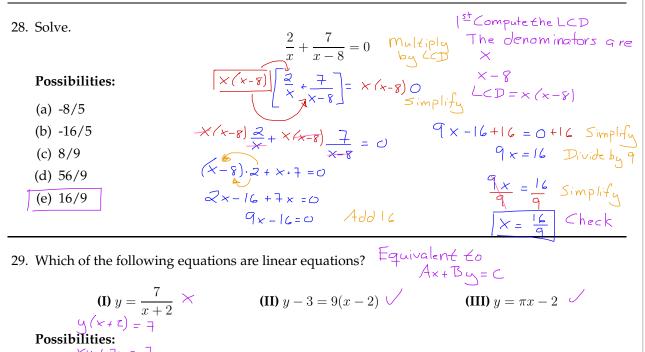
$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$


$$\frac{3}{4} + x + 1 = x + 28.$$


$$\frac{3}{4} + x + 1 = x + 28.$$


$$\frac{3}{4} + x + 1 = x + 28.$$

$$\frac{3}{4} + x + 1 = x + 28.$$

$$\times^3 + 1 - 1 = 28$$

$$(x-8) \cdot 2 + x \cdot 7 = 0$$

 $2x-16+7x=0$
 $9x-16=0$ Add 16

$$\frac{9x}{9} = \frac{16}{9}$$
 Simplify
$$x = \frac{16}{9}$$
 Check

(I)
$$y = \frac{7}{x+2}$$
 \times (II) $y-3=9(x-2)$ (III) $y=\pi x-2$

Possibilities:

- (b) None of the equations are linear.
- (c) Only equations (I) and (II) are linear
- (d) All of the equations are linear.
- (e) Only equations (II) and (III) are linear

30. The distance from *x* to 6 is 4. Which of the following equations represents this fact?

Possibilities:

The distance from a to b is
$$|a-b|$$

(a) $|x-6|=4$

(b) $|x+6|=4$

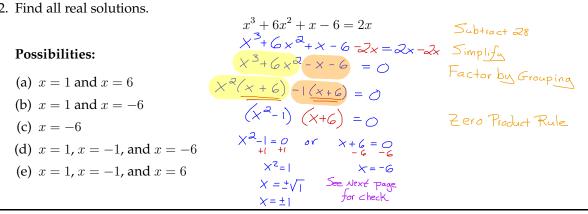
(c) $|x+4|=6$

(d) $|x-4|=6$

(e) $|x|=10$

The distance from a to b is $|a-b|$

The distance from a to b is $|a$


31. Find all real solutions or state that there are NONE.

$$(x-1)^2 - 6x = (x-7)^2 + 3$$

$$X = \frac{17}{2} \text{ is the only real solution, See work on Next page.}$$

#28 (Theck >	x = 16								
			7							
	2/1	16 89								
		9 1 9								
	2 9	+ 1 16 - 72 9	? = 0							
	1 16	16-72								
	$ \mathcal{O}_{ } $	7/1 ?	0							
	8	7/1 ?								
	9	4 1								
	8	7.9?	0							
	9	9 ?	5							
	U	0								
		0 = 0								
		,	16	. 21				, ,		
	Conseq	quently)	X = 9	is the	only	rea.	Soll	ition		
31 (x-1)2-6	$x = (x - 1)^{2}$	+3	a ² =(i-a		Che	ck >	(= 	
(X-1)(x-1)-6	$x = (x-1)(x)$ $6x = x^2 - 7x$ $-x^2 = x^2$	+3	Visti	bute (FOIL)	(1 <u>3</u> -i	2 3 17	<u>?</u> (1 7 − ±) 2+	٦
X -	- 8 × + 1	$6 \times = \times $	1 x + 5 =	7 +5 -	tiact x	2	(17 a) (2 - 2	2 ? - 5-1 =	(2 1) (17 - 14) (2 - 14) + 3	
-	x+1-X	2 = 27 - 14	× + 52	Sin	nplify		$\left(\frac{15}{2}\right)^{3}$	- 51 =	$\left(\frac{3}{2}\right)^2 + 3$	_
	- 7× +	= -14x+	12	Add	14x		<u>223</u> - <u>223</u>	$\frac{51}{1} \cdot \frac{4}{4} = -$ $\frac{5-204}{2} = \frac{2}{3}$	1 + 1 , 4 9 + 12	
	$(0 \times 4) + 10$	+ = 5 = 7	2+14x	5, ht.	1+4		6	$\frac{9}{9} = \frac{21}{9}$	4	
	6+1-	-1 = 52-1		Simpli	Ly	Conse	guentli	1 X =	17 is a	
	6	X - 5/		Divide	by 6	50	lution			
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dimpli	/ 9					
		X = 51 = 1	7 2	Check						
			+'							

32. Find all real solutions.

33. Find an equation for the line that is perpendicular to $y = \frac{5}{6}x + 6$ and contains the point (0,12).

34. How many solutions does the equation have?

$$-3x^2 + 12x = -3$$

$$X = 2 \pm \sqrt{5}$$
 See Next page for work

35. Find all real solutions.

5. Find all real solutions.
$$x = 2x^{2} \qquad \text{Subtract} \times \\ \times -x = 2x^{2} -x \qquad \text{Simplify}$$
(a) $x = 0$ and $x = \frac{1}{2}$
(b) $x = 0$ and $x = 2$
(c) $x = 0$
(d) $x = \frac{1}{2}$
(e) $x = 2$
(for $x = 2$
(e) $x = 2$
(for $x = 2$
(for $x = 2$
(for $x = 2$
(go and $x = 2$
(go

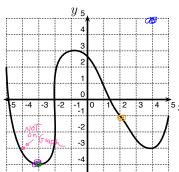
1427	
#32 Check $x=1$ Check $x=1$ Check $x=1$ $ x =1$	+6(-1)2+(-1)-6=2(-1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 6 - 1 - 6 = - 2
2 = 2 (i)	4 - 6 = -2
	c = - l is a solution
$(-6)^3 + 6(-6)^3 + (-6) - 6 = 2(-6)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$-12 = -12$ $50 \times = -6 \text{ is a Solution}$	
#33 y = 5x + 6 has slope = 5 Ehe perpendicular to this slope	15 5
Consequently an equation of a line wit	in slope & containing
The point $(0,12)^{\dagger}$ is $u = \frac{6}{5} + 1$	
y-intercept y= mx+b	
Slope inter	
Note if you are Not given the y-in Point-slope form of a line: y-y,= m	1 (x-x,)
#34 - 3x2 + 12x = -3 Divide bu	
$-3 \times 2 + 12 \times = -3$ $-3 + 3 -3$ $\times 2 + 4 \times = 1$ $5ubtact$	20
$x^{2} + 4x = 1$ $x^{2} - 4x - 1 = 1 - 1$ Simplify	2 10
$x^2 - 4x + 1 = 0$	52
$Discriminant = b^2 - 4ac = (4)^2 - 4(1)(-1)$	50 \\20 = \\2 ² .5 = \\2 ² .\s- = 2\s
$= 16 + 4 = 20$ Quadratic Formula $x = -b \pm \sqrt{b^2 - 4cc}$	- (-4) ± V20 _ 4 ± V20
2a	$2(1)$ $2 \pm \sqrt{5} = 2 \pm \sqrt{5}$
2/5= 8	

36. Find all the solutions of the equation.

|2x+18|+1=11 Subtract

- (b) The only solution is x = -4.
- (c) The only solution is x = -14.

$$2 \times +18 = 10$$
 and $2 \times +18 = -10$
 $-18 - 18$
 $4 \times = -8$
 $2 \times = -28$


- (d) There are exactly two solutions: x = -4 and x = -14.
- (e) The equation does not have any solutions.

X = - 14 X = - 4

37. In the picture below, the graph of an equation involving x and y is shown. Find the true statement.

Check X=-4

Il = 11 So x=-4 is a solution

Check x = -14 |2(-14) + 18| + 1 = 111-28 + 181 + 1= 11 -10 | + 1 = 11 10 + 1 = 1 $\Pi = \Pi$

SU X=-14 is a solution

Possibilities:

- (a) |(-3, -4)| is a solution to the equation.
 - (b) (4,5) is a solution to the equation.
 - (c) (2,-1) is a **NOT** solution to the equation.
 - (d) (-3, -4) is a NOT solution to the equation.
 - (e) (-4, -3) is a solution to the equation.