MA 109 - College Algebra
EXAM 2 - REVIEW
Spring 2011 Name: Sec.: \qquad

1. Approximate the solution to $8 x^{3}+12 x^{2}+6 x+1=5$.

Possibilities:
(a) $x \approx 0.1713$
(b) $x \approx-0.0770$
(c) $x \approx 0.1775$
(d) $x \approx 0.3550$
(e) $x \approx 5.0000$

$$
\frac{\text { enter as } y_{1}=(x /(x+11))+1}{1}
$$

2. Suppose you want to graph $(y-1)(x+11)=x$ on your graphing calculator. What should you enter into your calculator? $y-1=\frac{x}{x+11} \frac{2^{\text {nd }} \text { add }}{\longrightarrow} \xrightarrow{4} y=\frac{x}{x+11}+1$
3. Find the inequality that corresponds to the number line below.

Possibilities: \quad midpoint $=\frac{-7+1}{2}=\frac{-6}{2}=-3$
(a) $|x+3|<4$
Distance from - 3 to $1=|-3-1|=|-4|=4$
(b) $|x-3|>4$
(c) $|x+3|>4$
(d) $|x-4|>3$
(e) $|x-4|<3$

$|x-(-3)|$

$$
\text { Consequently, we have }|x+3|>4
$$

4. Solve the inequality $x^{2}-x-39 \geq-9$. Write the solution set in interval notation.

Possibilities:

$$
x^{2}-x-39 \geq-9 \quad \text { Add } 9 \text { (same) }
$$

(a) $(-\infty,-9]$
$x^{2}-x-39+9 \geq-9+9$ \qquad Simplify (some)

(b) $[-9, \infty) \quad x^{2}-x-30 \geq 0 \quad$ Factor (same)
(c) $(-\infty,-6] \cup[5, \infty)$
(d) $[-5,6]$
(e) $(-\infty,-5] \cup[6, \infty)$

$$
(x-6)(x+5) \geq 0 \text { want }+
$$

Critical Numbers

$$
\begin{array}{rrr}
x-6=0 & x+5=0 \\
x=6 & x=-5 \\
\hline
\end{array}
$$

1 Answer: $(-\infty 0,-5] \cup[6, \infty)$
5. When you are traveling in the mountains, you will often see signs about the grade of the road. If you are traveling downhill and you see a sign indicating that the road has a 7 percent grade, then the slope of the road is $\frac{-7}{100}$. Suppose you are traveling downhill on a road with a 5 percent grade. If your horizontal distance has changed by 800 feet, how far have you descended?

Possibilities:

(a) 40 feet
(b) 140 feet
(c) 190 feet
(d) - 10 feet
(e) 90 feet
6. Suppose you want to graph $4 x-2 y+14=0$ on your graphing calculator. What should you enter into your calculator?

$$
\begin{aligned}
4 x-2 y+14 & =0 \quad \text { Subtract } 4 x \\
4 x-2 y+14-4 x & =0-4 x \text { Simplify } \\
-2 y+14 & =-4 x \text { Subtract } 14 \\
-2 y+14-14 & =-4 x-14 \text { Simplify } \\
-2 y & =-4 x-14 \text { Divideby }-2 \\
\frac{-2 y}{-2} & =\frac{-4 x-14}{-2} \text { Simplify } \\
y & =\frac{-4 x-14}{-2} \\
\text { Enter into your calculator } y_{1} & =(-4 * x-14) /(-2)
\end{aligned}
$$

7. How many solutions does the following system of equations have?

Possibilities:
(a) No solutions
(b) One solution $\left\lvert\, \Subset\left(0, \frac{4}{3}\right)\right.$
(c) Two solutions
(d) Three solutions
(e) Infinitely many solutions

$$
\begin{aligned}
& \left\{\begin{array}{r}
6 x+27 y=36 \xrightarrow{\text { Divide by } 3} \quad \begin{array}{r}
2 x+9 y=12 \\
-4 x+18 y=24 \\
\text { Dividebyz } \\
-2 x+9 y=12
\end{array} \frac{18 y=\frac{24}{18}}{18}
\end{array}\right. \\
& \begin{array}{l}
\text { Substitute into } \\
\text { either equation } \\
\text {. } \\
\text {. } \\
18 \\
\frac{24}{18}=\frac{12}{9}=\frac{4}{3}
\end{array} \\
& \begin{array}{l}
\text { Equation | } 6 x+27 \cdot \frac{4}{3}=36 \text { Simplify } \\
\text { But youcen } \\
\text { use either }
\end{array} \quad 6 x+36=36 \text { Supt } \\
& \text { use either } 6 x+36=36 \quad \text { Subtract } 36 \\
& 6 x+36-36=36-36 \text { Simplify } \\
& 6 x=0 \quad \text { Divide by } 6 \\
& \frac{5 x}{6}=\frac{0}{6} \quad \text { Simplify } \\
& x=0
\end{aligned}
$$

8. Let $f(x)=2 x^{2}+6 x$. Find $\frac{f(x+h)-f(x)}{h}$.

Possibilities: $1^{\text {s }^{+t}}$ Compute $f(x+h)=2(x+h)^{2}+6(x+h)=2(x+h)(x+h)+6(x+h)$
(a) $\begin{aligned} 2 h^{2}+6 h \quad & =2\left(x^{2}+x h+h x+h^{2}\right)+6 x+6 h=2\left(x^{2}+2 x h+h^{2}\right)+6 x+6 h\end{aligned}$
(b) $-4 x-2 h-6$
$=2 x^{2}+4 x h+2 h^{2}+6 x+6 h$
(c) $\frac{2 h^{2}+6 h}{h} \quad \frac{f(x+h)-f(x)}{h}=\frac{\left(2 x^{2}+4 x h+2 h^{2}+6 x+6 h\right)-\left(2 x^{2}+6 x\right)}{h}$
(d) $4 x+2 h+6$ $=2 x^{2}+4 x h+2 h^{2}+6 x+6 h-2 x^{2}=6 x$
(e) $\frac{4 x h+2 h^{2}+12 x+6 h}{h}$

$$
=\frac{4 x h+2 h^{2}+6 h}{h}=\frac{h(4 x+2 h+6)}{h}=4 x+2 h+6
$$

9. Suppose you need to solve a system of equations in which one equation is $y=\sqrt{x}$ and the other equation represents a line. How many solutions could your system have? \qquad
10. Solve the inequality.

$$
\frac{x+8}{x-7} \geq 0
$$

Possibilities:
Critical Numbers:

(a) $[-8,7)$
(b) $(-\infty,-8) \cup(7, \infty)$ $x+8=0$ or $x-7=0$
(c) $(-\infty,-8] \cup(7, \infty)$
(d) $(-8,7)$
(e) $[-8,7]$

$$
\text { Answer: }(-\infty,-8] \cup(7, \infty)
$$

11. Solve the inequality.

$$
\text { Critical Numbers: } \quad \frac{x+2}{x-5} \geq 0
$$

Possibilities:
(a) $(-\infty,-2] \cup(5, \infty)$ $x+2=0$ or $x-5=0$

$$
x=-2 \quad x=5
$$

(b) $[-2,5)$
(c) $(-\infty,-2) \cup(5, \infty)$

Test			
Point	$x+2$	$x-5$	sign
-3	-	-	+
0	+	-	-
6	+	+	+

(d) $(-2,5)$
(e) $[-2,5]$

Answer: $(-00,-2] \cup(5,00)$
12. Carol has $\$ 4000$. She invests x dollars at a simple interest rate of 6% and the rest of her money at a simple interest rate of 5%. After one year, the total interest earned on these investments is $\$ 215.00$. Which of the equations below would you solve to find x ?

Possibilities:
(a) $0.06 x \times 0.05(4000-x)=215.00$
(b) $6 x+5(4000-x)=215.00$
(c) $\frac{x}{6}+\frac{4000-x}{5}=215.00$
(d) $0.06 x+0.05(4000-x)=215.00$
(e) $\frac{x}{0.06}+\frac{4000-x}{0.05}=215.00$
$x=$ amount invested at 6%
y =amount invested at $5 \% \quad$ solve for $y: y=4000-x$
Total Amount of money: $x+y=4000$
Calculate Interest:
13. Solve the inequality.

$$
(x+4)(x-2) \geq 0
$$

Possibilities: Critical Numbers:
(a) $[-4,2]$ $(x+4)(x-2)=0$
(b) $(-4,2)$ $x+4=0$ or $x-2=0$
(c) $(-\infty,-4) \cup(2, \infty) \quad x=-4$
$\begin{array}{llll}\text { (d) }(-\infty, \infty) & -5 & 0 & 3\end{array}$
(e) $(-\infty,-4] \cup[2, \infty) \quad-4$ Answer: $(-\infty,-4] \cup[2, \infty)$
14. What quantity, x, of a 30% acid solution must be mixed with a 25% acid solution to produce 2500 mL of a 26.4% solution?
Possibilities: Quantity x Quantizy Total Amount: $x+y=2500 \longrightarrow-0.25 x-0.25 y=-625$
(a) 500 mL
(b) 900 mL
(c) 700 mL Amount of Acid

(d) 600 mL

Acid from the 30% acid solution $=$ amount $*$ percent $=x * 0.30=0.30 x$
(e) $800 \mathrm{~mL} \quad \begin{aligned} & \text { Acid from the } 25 \% \text { a acid solution }=\text { amount } * \text { percent }=y * 0.25=0.25 y \\ & \text { Acid from the } 26.4 \% \text { acid solution }=\text { amount } * \text { percent }=2500 * 0.264=6.60\end{aligned}$
$x=700 \mathrm{~mL}$
15. Solve the inequality.

Possibilities:	Numbers: $\quad \frac{x+5}{x-6} \geq 0$		Test Point	$x+5$	$x-6$	sign
	$x+5=0$ or	$x-6=0$	-6	-	-	sign
(a) $(-\infty,-5] \cup(6, \infty)$	$x=-5$	$x=6$	0	+	-	-
(b) $(-\infty,-5) \cup(6, \infty$	-6 0	7	7	+	+	+
(c) $[-5,6)$	-5	-				
(d) $[-5,6]$ (e) $(-5,6)$	nswer: ($-00,-5$	$(6,00)$				

16. Solve the inequality and graph the solution set on the real number line.
$\frac{-2 x}{-2} \leq \frac{-4}{-2}$ Simplify (scme)
$x \leq 2$
Possibilities:
(a)

$$
\begin{gathered}
15-2 x \geq 11 \quad \text { Subtract } 15 \text { (Same) } \\
15-2 x-15 \geq 11-15 \text { Simplify (Same) } \\
-2 x \geq-4 \text { Divide by }-2 \text { (sa }
\end{gathered}
$$

(b)

(c)

(d)

17.

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 3 \\ x-2 & \text { if } x>3\end{cases}
$$

Find $f(5)$.
Possibilities:
(a) $\frac{7}{3}$
(b) Both 7 and 3 .

Step 1: Determine which expression to use

$$
\text { Is } 5 \leq 3 \text { ? No!!! so don't use } x+2
$$

Is $5>3$? Yes (i) so use $x-2$
(c) 21

$$
\text { Therefore, } f(5)=5-2=3
$$

(d) 7
(e) 3
18. Let $f(x)=\sqrt{8-x}$. Find the domain of $f(x)$.

Possibilities:

(a) $(-8, \infty) \quad$ Must have $8-x \geq 0$ Add x (some)
(b) $(-\infty, 8)$
(c) $(-\infty, 8]$ $\begin{aligned} 8-x+x & \geq 0+x \quad \text { Simplify (some) } \\ 8 & \geq x\end{aligned}$
(d) $(-\infty,-8) \cup(8, \infty)$
(e) $[8, \infty)$

19. Suppose you need to solve a system of equations in which one equation is $y=|x|$ and the other equation represents a line. How many solutions could your system have? Zero, one, two, or infinite
20. Solve the inequality and graph the solution set on the real number line.

21. In the graph below, the solid graph is the graph of $y=f(x)$ and the dashed graph is the graph of $y=g(x)$. Which of the following statements are true?

$\ddot{シ}$
(I) $f(0)<g(0)$
$-7 \quad-5$
$\because($ II) $f(1)=g(1)$
$\begin{array}{cc}11 & 11 \\ -6 & -6\end{array}$
(III) $f(2)>g(2)$
$\begin{array}{rr}11 & -1 \\ -3 & -9\end{array}$

Possibilities:

(a) (I), (II), and (III) are all true.
(b) Only (I) is true.
(c) None of the statements are true.
(d) Only (II) is true.
(e) Only (I) and (III) are true.
22. Find all the solutions of the system of equations.
Two Solutions

$$
\begin{aligned}
& \text { See work on } \\
& \text { Next Page }
\end{aligned} \quad\left\{\begin{array}{l}
-3 x+y=4 \\
x^{2}-10 x-y=-44
\end{array} \quad(8,28) \text { and }(5,19)\right.
$$

23. Let $f(x)=|x-4|$. Evaluate $f(7-9)$. $=f(-2)=|-2-4|=|-6|=\square 6$

$$
\begin{aligned}
& \text { \#22| } \begin{array}{l}
-3 x+y=4 \text { Solve fry } y=4+3 x \\
x^{2}-10 x-y=-44
\end{array} \quad \begin{array}{l}
\text { Substitute }
\end{array} \\
& \text { Substitution Method into Equation } 2 \\
& x^{2}-10 x-(4+3 x)=-44 \\
& x-8=0 \quad<\quad x-5=0 \\
& x=8 \quad x=5 \quad \text { Back Substitute } \\
& \begin{array}{ll}
y=4+3(8) \quad y=4+3(5) \quad \text { to find } y \\
y=4+24 & y=4+15
\end{array} \\
& y=4+24 \quad y=4+15 \\
& y=28 \quad y=19 \\
& (8,28) \quad(5,19) \\
& x^{2}-10 x-4-3 x=-44 \quad \text { Simplify } \\
& x^{2}-13 x-4=-44 \quad \text { Add } 44 \\
& x^{2}-13 x-4+44=-44+44 \text { Simplify } \\
& x^{2}-13 x+40=0 \quad \text { Factor } \\
& x^{2}-5 x-8 x+410=0 \\
& x(x-5)-8(x-5)=0 \\
& (x-8)(x-5)=0
\end{aligned}
$$

24. The graph of $y=f(x)$ is shown below. Use the graph to find the solutions of $f(x)=0$. (HINT: All of the solutions are integers.)

25. Solve the inequality.

Possibilities:
(a) $(-8,7)$
(b) $[-8,7]$
(c) $(-\infty, \infty)$

$$
(x+8)(x-7)<0
$$

(d) $(-\infty,-8) \cup(7, \infty)$

26. Let $f(x)=4 x+7$. Find $\frac{f(x+h)-f(x)}{h}$. Conspqeently, $\frac{f(x+h)-f(x))}{h}=\frac{(4 x+4 h+7)-(4 x+7)}{h}=\frac{4 x+4 h+7-4 x-7}{h}=\frac{4 h}{h}=4$
27. Find the interval on the Celsius scale corresponding to a Fahrenheit temperature between $30^{\circ} \mathrm{F}$ and $110^{\circ} F$. Recall that the relationship between degrees Celsius (C) and degrees Fahrenheit (F) is $\begin{array}{lll}\text { given by the equation } F=\frac{9}{5} C+32 . & \underset{s_{u b+r i a c t}}{ } F-32=\frac{9}{5} C \\ \text { Possibilities: } & \text { 分 } & C=\frac{5}{9}(F-32)\end{array}$
Possibilities: Solve for $C \quad 32 \quad \frac{5}{9}[F-32]=C \quad$ maltiply by $\frac{5}{9}$ If $F=30^{\circ}$
(a)The temperature is between about $-1.11^{\circ} \mathrm{C}$ and $43.33^{\circ} \mathrm{C}$. $\quad C=\frac{5}{9}(30-32)=\frac{5}{9} \cdot\left(-\frac{2}{9}\right)=\frac{-10}{9}$
(b) The temperature is between about $-3.60^{\circ} \mathrm{C}$ and $140.40^{\circ} \mathrm{C}$. Tf $\mathrm{F}=110^{\circ} \mathrm{F} \quad=-1.11$.
(c) The temperature is between about $60.40^{\circ} \mathrm{C}$ and $204.40^{\circ} \mathrm{C}$. If $F=110^{\circ}$ then
(d) The temperature is between about $111.60^{\circ} \mathrm{C}$ and $255.60^{\circ} \mathrm{C}$.
(e) The temperature is between about $86.00^{\circ} \mathrm{C}$ and $230.00^{\circ} \mathrm{C}$.

$$
\begin{aligned}
C=\frac{5}{9}(110-32)=\frac{5}{9} \cdot \frac{78}{1} & =\frac{390}{9} \\
& =43.33 \ldots
\end{aligned}
$$

28. A ball is thrown straight upward at an initial speed of $96 \mathrm{ft} / \mathrm{sec}$. From Physics it is known that, after t seconds, the ball reaches a height h feet given by the formula

$$
h=-16 t^{2}+96 t .
$$

When does the ball hit the ground?
Possibilities: Height is zero when ball hits the ground
(a) 3.00 sec
$0=-16 t^{2}+96 t$
(b) 144.00 sec
$O=-16 t[t-6]$
Consequently, the ball is at ground
(c) 6.00 sec
$\begin{aligned} &-16 t=0 \\ &-16\end{aligned} \quad \begin{array}{r}i 6 \\ ;\end{array} \quad \begin{array}{r}t-6=0 \\ +6+6\end{array}$
level when time is at zero second
(d) 196.30 sec
(e) 4.30 sec

$$
t=0 \text { second } t=6 \text { second }
$$

29. Kayla earns $\$ 8.50$ per hour. If she works more than 40 hours in a week, she is paid time and a half (1.5 times her regular salary) for every hour over 40 hours. Her gross pay last week was $\$ 403.75$. How many hours did Kayla work last week?

$$
\begin{aligned}
& \text { Note } 40 \times 8.5=340 \text {. Since Kayla made } 403.75 \text { last weeks he } \\
& \text { must have worked more than } 40 \text { hours. } \\
& \text { Kayla is payed time and a half for ouer time }=1.5 \times 8.5=12.75 \\
& \text { Note of the } \$ 403.75,403.75-340=\$ 63.75 \text { is over time pay. } \\
& \text { Therefore, Kayla worked } \frac{43.75}{12.75}=5 \text { hours of overtime last week. } \\
& \text { Consequently Kayla worked } 40+5=45 \text { hours last week. }
\end{aligned}
$$

30. How many solutions does the following system of equation have?

Possibilities:

$$
\begin{aligned}
& \begin{cases}x= & -14 \\
x^{2}+y^{2} \overline{\text { 两 }} \text { vertical line } & \text { at } x=-1\end{cases} \\
& \quad \begin{array}{c}
\text { circle centered at the origin } \\
\text { of radius } 2
\end{array}
\end{aligned}
$$

(a) No solutions
(b) One solution
(c) Two solutions
(d) Three solutions
(e) Infinitely many solutions

31. How many solutions does the following system of equation have?

Possibilities:
(a) No solutions
(b) One solution
(c) Two solutions
(d) Three solutions
(e) Infinitely many solutions

$$
\left\{\begin{array}{l}
x=-2 \llbracket \\
x^{2}+y^{2}=4 \\
\frac{\text { vertical }}{} \quad \text { at } x=-2
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Circle centered at the origin } \\
& \text { of radius ? }
\end{aligned}
$$

32. A chemist has two large containers of hydrochloric acid (HCl) solution. The concentration of the acid is different in the two containers. She blends 100 mL of the first solution with 300 mL of the second solution to obtain a solution that is 10.2500% acid. She blends 300 mL of the first solution with 200 mL of the second solution to obtain a solution that is 12.0000% acid. What are the concentrations of hydrochloric acid in the original containers?

$$
14 \% \div 9 \%
$$

seework on Next page
33. Let $f(x)=3 x^{2}+2 x+1$. Find $\frac{f(x+h)-f(x)}{h}=3 x+3 h+2$ see work on follow page
\#32 Letx\%be the concentration of acid in the first container Let $y \%$ be the concentration of acid in the second container Event One Event Two
 $400 \mathrm{~mL} \left\lvert\, \begin{aligned} & 100+300=400 \mathrm{~mL} \\ & @ 10.25 \%\end{aligned}\right.$ $500 \mathrm{~mL} \quad 300+200=500 \mathrm{~mL}$

Counting Acid we have Counting Acid we have the equation
$100 x+300 y=0.1025(400)$ the equation
$100 x+300 y=41$
$300 x+200 y=0.12(500)$
$300 x+200 y=60$
Therefore we weed to solve the system $\left\{\begin{array}{l}100 x+300 y=41 \\ 300 x+200 y=60\end{array}\right.$

$$
100 x+300 y=41 \stackrel{\text { mutt inly }}{ }-300 x-900 y=-123
$$

$$
300 x+200 y=60
$$

$$
300 x+200 y=60
$$

Elimination Method

$$
\frac{-700 y}{-700}=\frac{-63}{-700} \text { Divide by }-700
$$

$$
\text { Now back substitute into equation } 1 \quad y=\frac{63}{700}=0.09
$$

$100 x+300(0.09)=41$
$100 x+27=41 \quad$ Subtract 27
$100 x+27-27=41-27$
Simplify

$$
\begin{aligned}
100 x & =14 \quad \quad \text { Divide by } 100 \\
\frac{100 x}{100} & =\frac{14}{100} \quad \text { Simplify } \\
x & =0.14
\end{aligned}
$$

Conclusion. The first container's concentration of acid is 14% while the second container's concentration of acid is 9%

```
#33
```

$$
\begin{aligned}
& 1^{\text {st }} \text { Compute } f(x+h)=3(x+h)^{2}+2(x+h)+1 \\
& =3(x+h)(x+h)+2 x+2 h+1 \\
& =3\left(x^{2}+x h+h x+h^{2}\right)+2 x+2 h+1 \\
& =3\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+1 \\
& =3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1 \\
& \text { Consequently, } \frac{f(x+h)-f(x)}{}=\left(\frac{\left.3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1\right)-\left(3 x^{2}+2 x+1\right)}{h}\right. \\
& \text { h } \\
& \text { h } \\
& \begin{array}{l}
=\frac{3 x^{2}+6 x h+3 h^{2}+2 x+2 h+h-3 x^{2}-3 x-1}{h} \\
=\frac{6 x h+3 h^{2}+2 h}{h}=\frac{k(6 x+3 h+2)}{h}
\end{array} \\
& =6 x+3 h+2
\end{aligned}
$$

34. Let $f(x)=3+6 x-x^{2}$. Find $f(u+v)$.

Possibilities:

$$
f(u+v)=3+6(u+v)-(u+v)^{2}
$$

(a) $3+6 u+6 v-u^{2}-2 u v-v^{2} \mid$
$=3+6 u+6 v-(u+v)(u+v)$
(b) $6+6 u+6 v-u^{2}-2 u v-v^{2}$
$=3+6 u+6 v-\left(u^{2}+u v+v u+v^{2}\right)$
(c) $6+6 u-u^{2}+6 v-v^{2}$
$=3+6 u+6 v-\left(u^{2}+2 u v+v^{2}\right)$
(d) $\left(3+6 x-x^{2}\right)(u+v)$
$=3+6 u+6 v-u^{2}-2 u-v^{2}$
(e) $3+6 u-u^{2}+6 v-v^{2}$
35. Let $f(x)=\sqrt{x-2}$. Find $f(a+b)$.

$$
f(a+b)=\sqrt{(a+b)-2}=\sqrt{a+b-2}
$$

36. Let $f(x)=\frac{1}{\sqrt{x-3}}$. Find the domain of $f(x)$.

Possibilities: Need $\sqrt{x-3} \neq 0$ and $x-3 \geq 0$ Add 3 (same) (a) $(-3, \infty)$
(b) $(3, \infty)$ Note $\sqrt{x-3}=0$ means $\begin{gathered}x-3+3 \geq 0+3 \text { Simplify } \\ x \geq 3\end{gathered}$
(c) $(-\infty, 3]$
$0^{2}=x-3$ Simplify
$x \geq 3$
(d) $(-\infty,-3)$
(e) $[3, \infty)$

$3=x \quad \begin{gathered}\text { in other } \\ \text { wolds }\end{gathered}$
or $x=3^{46}$ wolds we can not have $x=3$

37. Joe the plumber charges a $\$ 70$ service fee plus $\$ 50$ per hour. If the total bill was $\$ 220$, how many hours did Ed work?
Possibilities:
Let x be the number of hours Joe worked
(a) 6 hours Then, Joe's Bill $=$ Service fee $+50 *$ number of hours Joe worked
(b) 4 hours that is Joe's Bill $=70+50 x$
(c) 3 hours (d) 5 hours $220=70+50 \times$ Subtract 70
(e) 7 hours

$$
220-70=70+50 x-70
$$

Simplify

$$
150=50 \times \quad \text { Divideby } 50
$$

$$
\frac{150}{50}=\frac{50 x}{50} \quad \text { Simplify }
$$

$$
3=x \text { or } x=3 \text { hours }
$$

38. The graph of $y=f(x)$ is shown below. Find the domain and range of f.

Possibilities:

(a) Domain: $[-1,1]$

Range: $[-3,5]$
(b) Domain: $[-4,1]$

Range: $[-3,5]$
(c) Domain: $[-3,5]$

Range: $[-4,1]$
(d) Domain: $[-3,5]$

Range: $[-1,1]$
(e) Domain: $[-3,1]$

Range: $[-4,-1]$
39. Let

$$
x=-7 \quad f(x)=\left\{\begin{array}{ll}
|x+1| & \text { if } x \leq-2 \\
x-6 & \text { if } x>-2
\end{array} \text { Note: }-7 \leq-2 \text { sock this first with } x=-7\right.
$$

Find $f(-7)$.

$$
f(-7)=|-7+1|=|-6|=6
$$

40. Let $f(x)=\frac{x+1}{\sqrt{x+6}}$. Find $f(2)$.

$$
f(2)=\frac{2+1}{\sqrt{2+6}}=\frac{3}{\sqrt{8}}=\frac{3}{2 \sqrt{2}}
$$

$$
\sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}
$$

41. What quantity, x, of a 55% acid solution must be mixed with a 20% acid solution to produce 800 mL of a 41.875% solution? Solation amounts: $x+y=800$
Possibilities:
(a) 500 mL @ 55%
(b) 700 mL
(c) 200 mL
(d) 600 mL
(e) 300 mL

Acid amounts: $: / .55 x+.20 y=0.41875 \times 800$
$\begin{gathered}\text { maltiply fy } \\ \text { by }-0.20 \quad \text { Elimination Method }\end{gathered}$
$\begin{aligned} & -0.20 x-0.20 y=-160 \\ & 0.55 x+0.20 y=335\end{aligned}$
$\begin{aligned} & 0.35 x+0 y=175\end{aligned}$

$$
\begin{aligned}
& 0.35 x=175 \text { Divide by } 0.35 \\
& \frac{0.35 x}{0.35}=\frac{175}{0.35} \text { Simplify }
\end{aligned}
$$

42. Find four consecutive integers whose sum is 266.

$$
65,66,67 \text { and } 68 \text { See work on Next page }
$$

43. Find all the solutions of the system of equations.

$$
\text { Solutions: }(40,6) \text { and }
$$

$$
\left\{\begin{array}{l}
x-5 y=10 \\
-x+y^{2}-4 y=-28 \quad \text { See work on vext page }
\end{array}\right.
$$

44. Find all the solutions of the system of equations, or state that there are no solutions.

$$
\left\{\begin{array}{l}
7 x+6 y=6 \\
8 x+6 y=3
\end{array} \text { Solution: }\left(-3, \frac{27}{6}\right)\right.
$$

45. A corner lot has dimensions 30 yards by 20 yards. The city plans to take a strip of uniform width along the two sides bordering the streets to widen these roads. How wide should the strip be if the remainder of the lot has an area of 416 square yards? Let " x " be the width of t he
Possibilities:
uniform strip removed from
(a) 30 yards

$$
\text { the corner lot. Note } 0 \leq x \leq 20
$$

(b) 416 yards 30
(c) -396 yards

$$
(20-x)(30-x)=416
$$

$$
600-20 x-30 x+x^{2}=416
$$

$$
x^{2}-50 x+600=416
$$

(d) 415 yards
(e) 418 yards

$$
x^{2}-50 x+600-416=416-416
$$

$$
(f) \text { NONE Of The Above }
$$

$$
x^{2}-50 x+184=
$$

$$
x^{2}-4 x-46 x+184=0
$$

$$
x(x-4)-46(x-4)=0
$$

$$
(x-46)(x-4)=0
$$

\#42 Suppose x is the smallest of the four consecutive integers whose $5 u m$ is 266 . Then we have the equation

$$
\begin{aligned}
x+(x+1)+(x+2)+(x+3) & =266 \\
4 x+6 & =266 \\
4 x+6-6 & =266-6 \text { Subtract } \\
4 x & =260 \\
\frac{4 x}{4} & =\frac{260}{4} \\
x & =65
\end{aligned}
$$

Consequently, the four numbers are: 65, 66,67 and 68 .
\#43 $x-5 y=10 \frac{x}{\text { Add } 5 y} \Rightarrow x=10+5 y$ $-x+y^{2}-4 y=-28$
Substitution method
Substitute into
Equation

$$
\begin{equation*}
-(10+5 y)+y^{2}-4 y=-28 \tag{Distribute}
\end{equation*}
$$

$$
\begin{array}{rr}
y-6=0 & y-3=0 \\
+6+6 & +3+3
\end{array}
$$

$$
-10-5 y+y^{2}-4 y=-28 \quad \text { Simplify }
$$

$$
\text { 就 } 10+5(3)
$$

$$
x=40 \quad x=25 \quad(\quad(y-6)(y-3)=0 \quad \text { Zero Product Rule }
$$

$$
(40,6) \quad \sum_{i}(25,3)
$$

multiply
\#44 $7 x+6 y=6 \xrightarrow{b y^{-1}} \quad-7 x-6 y=-6$
$8 x+6 y=3$
Elimination Method $\quad \begin{aligned} & 8 x+6 y=3 \\ & x+0 y=-3\end{aligned}$
Now back Substitute
to solve for y. (Either
equation works)
Equation One $\rightarrow 7(-3)+6 y=6$ Simplify

$$
-21+6 y=6 \quad \text { Add } 21
$$

$-21+6 y+21=6+21$ simplify

$$
\begin{aligned}
& 6 y=27 \text { Divide by } 6 \\
& \frac{6 y}{6}=\frac{27}{6} \text { Simplify } \\
& y=\frac{27}{6}
\end{aligned}
$$

46. Which of the following windows is an appropriate viewing window for $y=18 x-3 x^{2}$?

Possibilities:

(a) $-5 \leq x \leq 25,0 \leq y \leq 20$
(b) $-10 \leq x \leq 10,-50 \leq y \leq 50$
(c) $-10 \leq x \leq 10,-10 \leq y \leq 10$
(d) $-30 \leq x \leq 15,-100 \leq y \leq 250$
(e) None of the above windows gives a complete graph.
47. A rectangle has an area of 30 square feet and a diagonal of 5 feet. Which system of equations would you solve to find the length l and width w of the rectangle?

Possibilities:

(a) $\left\{\begin{array}{l}l w=30 \\ 2 l^{2}+2 w^{2}=25\end{array}\right.$

(b) $\left\{\begin{array}{l}2 l+2 w=30 \\ l^{2}+w^{2}=25\end{array}\right.$
(c) $\left\{\begin{array}{l}l w=30 \\ 2 l+2 w=5\end{array}\right.$

Pythagorean Theorem: $l^{2}+w^{2}=5^{-2}$
(d) $\left\{\begin{array}{l}l w=30 \\ l^{2}+w^{2}=25\end{array} ~\right.$
(e) $\left\{\begin{array}{l}2 l w=30 \\ l+w=5\end{array}\right.$
48. Let

$$
f(x)= \begin{cases}8 & \text { if } x \leq-5 \\ 16 & \text { if }-5<x<-1 \\ 24 & \text { if } x \geq-1\end{cases}
$$

Find $f(-4)+f(0)$. $1^{\text {st }}$ Note: $-5<-4<-1$ sofor $x=-4$ we use the second
Possibilities: equation 16
(a) 32
(b) 16
(c) 24

$$
\text { 2nd Note: } 0 \geq-1 \text { so for } x=0 \text { we use the third }
$$

(d) 8
(e) 40 Therefore, $f(-4)+f(0)=16+24=40$
49. Approximate the solution to $\frac{1}{\sqrt{x^{2}+1}}=\frac{1}{x+5}$.

Possibilities:
(a) $x \approx-1.2062$
(b) $x \approx-2.4000$
(c) $x \approx-2.8320$
(d) $x \approx-1.2000$
(e) $x \approx 0.3846$
50. Find all the solutions of the system of equations, or state that there are no solutions.

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x-5 y=-2 \xrightarrow{\text { matiply by }} \\
5 x-5 y=5 \longrightarrow 4 x+5 y=2 \\
\text { Elimination method } \\
\begin{array}{l}
5 x-5 y=5 \\
x+0 y=7
\end{array}
\end{array}\right. \\
& x=7
\end{aligned}
$$

(a) $x=-17 / 20, y=-3 / 5$
(b) $x=7, y=6$
(c) $x=4, y=-5$
(d) $x=1, y=-1$
(e) $x=-2, y=5$

