
MA 109 — College Algebra EXAM 3 - REVIEW	Name:	Sec.: _
---	-------	---------

1. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Find a formula for g(x).

Possibilities:

(a)
$$g(x) = f(2x)$$

(b)
$$g(x) = 2f(x)$$

(c)
$$g(x) = f(\frac{1}{2}x)$$

(d)
$$g(x) = -2f(x)$$

(e)
$$g(x) = \frac{1}{2}f(x)$$

2. Suppose that the graph of y = f(x) contains the point (5,3). Find a point on the graph of y = g(x) = 2f(x) - 4. Even $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6 - 4 = 2$ so $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6 - 4 = 2$ so $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6 - 4 = 2$ so $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6 - 4 = 2$ so $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6 - 4 = 2$ so $g(s) = 2 \cdot f(s) - 4 = 2 \cdot 3 - 4 = 6$

3. Let f(x) = |x+4| - 4. Find the average rate of change of f(x) between x = -8 and x = 9.

Possibilities:

(a)
$$-9/17$$
 Note: $f(q) = |q+4|-4 = |13|-4 = |13-4=9|$
(b) 9 and $f(-8) = |-8+4|-4 = |-4|-4 = |4-4=0|$

4. Suppose that the graph of y = f(x) contains the point (10,-20). Find a point on the graph of y = f(5x) + 7.

$$y = f(5x) + 7.$$

$$g(x) = \begin{cases} y = f(5x) + 7. \\ y = f(5x) + 7. \end{cases}$$
Thus, $g(x) = f(5x) + 7 = f(10) + 7 = -20 + 7 = -13$

$$\begin{cases} x = \frac{10}{5} & \text{Simplify} \\ x = 2 & \text{Insequently, g contains the point } (2, -13) \end{cases}$$

5. Let $f(x) = x^2 + 6x$. Find the average rate of change of f(x) from x = a to x = a + h. Assume $h \neq 0$.

Possibilities:
$$\sqrt{a+h} = (a+h)^2 + 6(a+h) = (a+h)(a+h) + 6a + 6h = a^2 + 9h + ha + h^2 + 6a + 6h$$

(a) $-2a - h - 6$ and $\sqrt{a+h} = a^2 + 6h$ $= a^2 + 2ah + h^2 + 6a + 6h$ $= a^2 + 2ah + h^2 + 6a + 6h$

(b)
$$\frac{2ah + h^2 + 12a + 6h}{h}$$

6. The mass m(t) remaining after t years from a 80-gram sample of a radioactive element is given by $m(t) = 80e^{-0.2t}$. When will the mass remaining equal 8 grams? Round your answer to the nearest hundredth of a year.

(d) About 0.12 years
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

(e) About 5.00 years
$$\frac{1}{10} = \frac{1}{10}$$

 $\left(N\left(\frac{1}{10}\right) = -0.26\right)$ Divide by -0.2

$$\frac{\ln\left(\frac{1}{10}\right)}{-0.2} = \frac{-0.2t}{-0.2}$$
 Simplify

$$\ln\left(\frac{1}{10}\right) = \ln\left(e^{-0.2t}\right) \quad \ln\left(e^{\times}\right) = \times \quad \text{Recall Properties:}$$

7. Solve.

rs
$$\frac{1}{10} = e^{-0.2t}$$
 $\frac{1}{10} = e^{-0.2t}$
 $\frac{1}{10} = \ln (e^{-0.2t})$
 $\frac{1}{$

Possibilities:
$$|\cos_8(x-5) + \log_8(x+2) = 1$$
(a) $x_1 = 6$ and $x_2 = 3$ $|\cos_8(x-5) + |\cos_8(x+2)| = 1$
(b) $x_1 = 5$ and $x_2 = -2$

$$|\cos_8(x-5) + |\cos_8(x+2)| = 1$$

$$|\cos$$

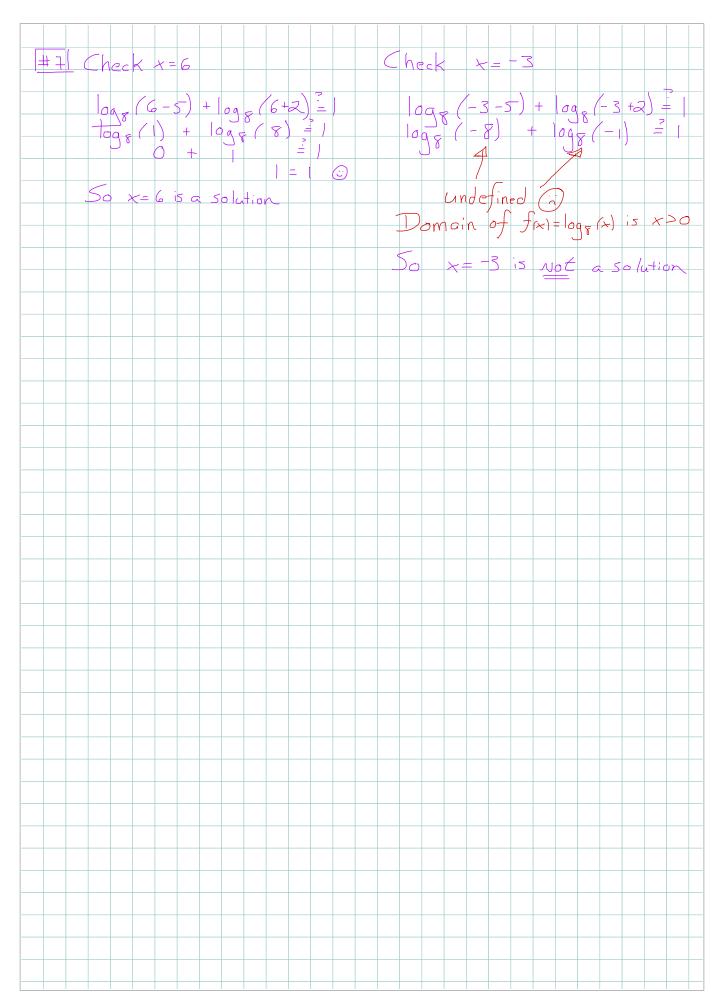
(c)
$$x_1 = 6$$

$$Y = x^{2} + 2x - 5x - 10$$
 Simpliful
$$S = x^{2} - 3x - 10$$
 Subtrates

8. Find all real solutions or state that there are NONE.

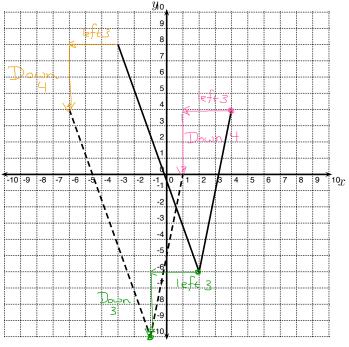
8. Find all real solutions or state that there are NONE.

$$8e^{x-6} = 2$$


$$8e^{x-6} = 2$$

$$8e^{x-6} = 2$$

$$8e^{x-6} = 2$$


$$8e^{x-6} = 1$$

$$8e^{x-$$

9. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Find a formula for g(x) in terms of f(x).

Ì	Geometry	Algebra	Equation
	left 3	Replace X with X+3	f(x+3)
	Down 4	Subtlact 4	f(x+3) - 4

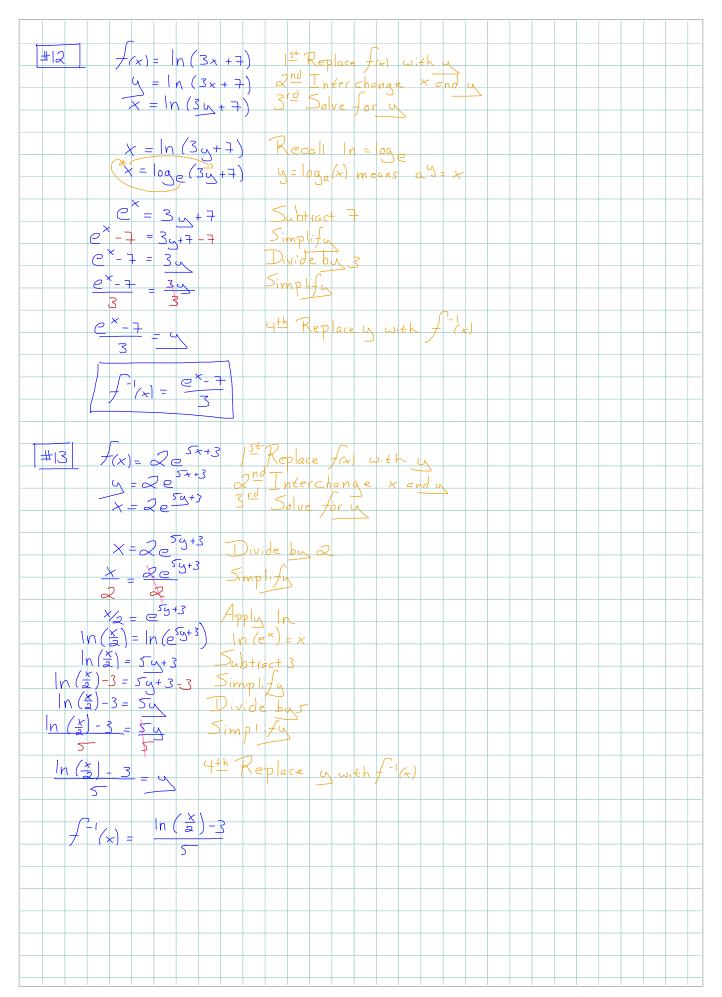
10. Suppose that the graph of y = f(x) contains the point (-2,7). Find a point on the graph of y =

(a) 3

$$\sqrt{(b) 6}$$

(c) 5
Note $f(9) = 6 \cdot 9 + 4 = 54 + 4 = 58$
and $f(-5) = 6 \cdot (-5) + 4 = -30 + 4 = -26$

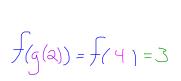
(d) 2 Average
(e) 4 Rate of
$$=$$
 $\frac{f(b)-f(c)}{b-a} = \frac{f(9)-f(-5)}{9-(-5)} = \frac{58-(-26)}{9-(-5)} = \frac{58+26}{9+5} = \frac{84}{14} = 6$

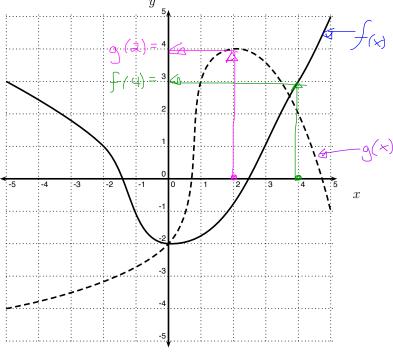

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

12. Let
$$f(x) = \ln(3x + 7)$$
. Find $f^{-1}(x)$.

$$\int_{-1}^{-1} (x) = \frac{e^{x} - 7}{3}$$
See work on west page

13. Let $f(x) = 2e^{5x+3}$. Find $f^{-1}(x)$.


$$\int_{-1}^{-1} (x) = \frac{\ln(\frac{x}{a}) - 3}{5}$$
See work on west page



14. The number of bacteria in a culture is modeled by the function $n(t) = 80e^{.45t}$ where t is measured in hours. After how many hours will the number of bacteria reach 7000?

Possibilities:

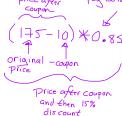
- (c) About 71.53 hours
- (d) About 4.32 hours
- In (87.5) = 0.45+ Divide by 0.45 In (87.5) = 8.45+ Simplify 0.45 (e) About 11.51 hours
- 15. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Use the graphs to evaluate f(g(2)).

16. Let
$$f(x) = \sqrt{x-3}$$
 and $g(x) = \sqrt{4-x}$. Find the domain of $(f+g)(x) = f(x) + g(x) = f(x) = f(x) + g(x) = f(x) = f(x) + g(x) = f(x) = f($

17. Let
$$f(x) = 3x - 7$$
. Find $f(f(x)) = f(3x - 7) = 3(3x - 7) - 7$

$$= 9x - 27 - 7$$

$$= 9x - 27 - 7$$



18. If \$5000 is invested at an interest rate of 8% per year compounded quarterly, find the amount of the investment at the end of 18 years. Kecall Compound Interest Formula

Possibilities:

- (a) \$6802.44
- (b) \$5412.16
- (c) \$20805.70
 - (d) \$7141.23
 - (e) \$1274912.56

discount means you %-15%-85% of the $P(t) = P_0 (1 + \frac{\Gamma}{N})^{nt}$, value of the $P(t) = P_0 (1 + \frac{\Gamma}{N})^{nt}$ 5 = 140.25 $P(18) = 5000 (1 + \frac{0.08}{4})^{4.18}$

$$P(18) = 5000 \left(1 + \frac{0.08}{4}\right)^{42}$$
$$= 5000 \left(1.02\right)^{42}$$

= 20805.70

- 19. You wish to purchase a new cell phone. You have a coupon for \$10 and the store is running a special which allows you to deduct 15% from the price. If the original price of the cell phone is 175 dollars, what is the final price if you apply the coupon and then apply the 15% discount.
- 20. Let $h(x) = (2x+1)^5$. Find functions f(x) and g(x) such that h(x) = f(g(x)).

Possibilities: Let
$$g(x) = Q(x+1)$$
 and $g(x) = (2x+1)^2$ and $f(x) = (2x+1)^3$ and $g(x) = (2x+1)^2$

(b)
$$f(x) = x^5$$
 and $g(x) = 2x + 1$

(c)
$$f(x) = x^5 + 1$$
 and $g(x) = 2x$

(d)
$$f(x) = 2x$$
 and $g(x) = x^5 + 1$

(e)
$$f(x) = 2x + 1$$
 and $g(x) = x^5$

- Then fig(x) = f(2x+1) = (2x+1) = h(x)
- (e) f(x) = 2x + 1 and $g(x) = x^5$
- 21. Which of the following functions are one-to-one?

(a).
$$a(x) = |x|$$
 (b). $b(x) = x^3$

(c).
$$c(x) = x^3 + 1$$

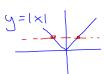
(c).
$$c(x) = x^3 + 1$$

(et).
$$d(x) = 5$$

(e).
$$e(x) = x^4$$

(x).
$$f(x) = x^4 + 1$$

(g).
$$g(x) = (x+1)^3$$

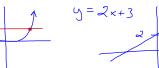

(g).
$$g(x) = (x+1)^3$$

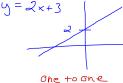
(h).
$$h(x) = |x+1|$$

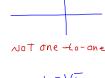
(i).
$$i(x) = 2x + 3$$

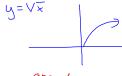
(j).
$$j(x) = \sqrt{x}$$

(k). $k(x) = \sqrt[3]{x}$

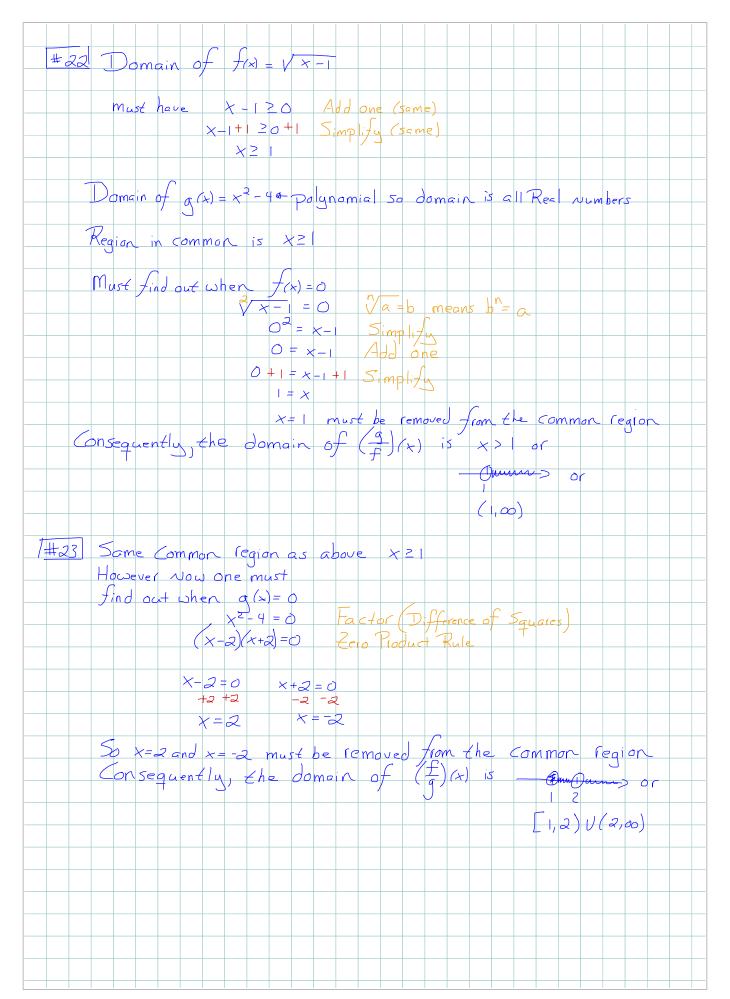

$$(x) = 0 \iff S$$





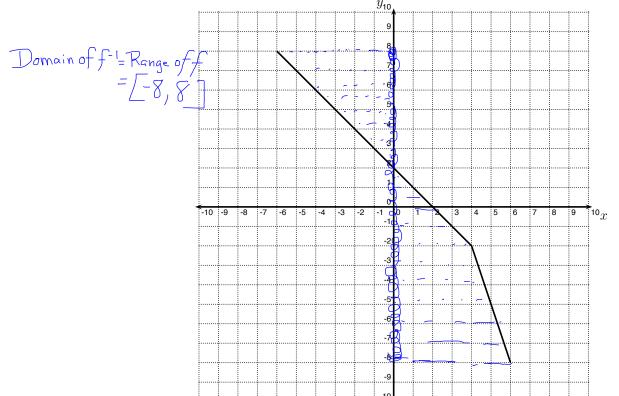


NOT one-to-one


One-to-one

```
22. Let f(x) = \sqrt{x-1} and g(x) = x^2 - 4. Find the domain of \left(\frac{g}{f}\right)(x).
  23. Let f(x) = \sqrt{x-1} and g(x) = x^2 - 4. Find the domain of \left(\frac{f}{g}\right)(x). \left[1,2\right) \cup \left(2,\infty\right) on Next Page
  24. Let f(x) = \frac{2x+3}{4-5x}. Find f^{-1}(x) = \frac{3-4x}{-5x-2} See work on following page
 25. Let f(x) = 2x^{2} + 7x. Find \frac{f(x+h) - f(x)}{h}.

Possibilities: |\frac{5^{+}}{\sqrt{x+h}}| = 2(x+h)^{2} + 7(x+h) = 2(x+h)(x+h) + 7x+7h
= 2(x^{2} + xh + hx + h^{2}) + 7x + 7h = 2(x^{2} + 2xh + h^{2}) + 7x + 7h
(a) -4x - 2n - 1
(b) \frac{2h^2 + 7h}{h}
= 2x^2 + 4xh + 2h^2 + 7x + 7h
(c) 2h^2 + 7h
= 2x^2 + 4xh + 2h^2 + 7x + 7h
(d) 4x + 2h + 7
= 2x^2 + 4xh + 2h^2 + 7x + 7h
(e) \frac{4xh + 2h^2 + 14x + 7h}{h}
= x(4x + 2h + 7)
= x(4x + 2h + 7
                                                                                                                                =2x^{2}+4xh+2h^{2}+7x+7h
                                                                                                               Distribute = log (x-2) - log (ys) - log (28)
                (a) -2\log(x)/(5\log(y) * 8\log(z))
                                                                                                                                                   7 = -2\log(x) - 5\log(y) - 8\log(z)
\frac{1}{2} = -2\log(x) - 5\log(y) - 8\log(z)
\frac{1}{2} \log_{x}(m \times N) = \log_{x}(m) + \log_{x}(N)
\frac{1}{2} \log_{x}(\frac{m}{N}) = \log_{x}(m) - \log_{x}(N)
                (b) -2\log(x) - 5\log(y) + 8\log(z)
                 (c) -2\log(x) + 5\log(y) - 8\log(z)
                (d) -2\log(x) - 5\log(y) - 8\log(z)
                 (e) -2\log(x)/5\log(y) * 8\log(z)
                                                                                                                                                                                                                              3 loga (mr) = (loga (m)
```


27. Let
$$f(x) = \log_2(x+7) - 3$$
. Find $f^{-1}(x) = 2$

| St Replace
$$f(x)$$
 with $g(x) = \log_{2}(x+7) - 3$ | $f(x) = 2^{nd}$ | Interchange $f(x)$ with $f(x)$ | $f(x) = 2^{nd}$ |

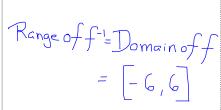
#24	f(x) =	2×+3	1st Rep 2nd Inte	lace fix) with u			
	=	2×+3	2nd Inte	erchange	x and u			
		2u+3	2 rd / 1					
	X -	4-54	3rd Solv	e for u	>			
		24+3	100					
			Multif		-1-5W			
(1-54)	= (2y+3)	(4-54)	Sim	oli fu			
<u> </u>		(9-5)			Alla	terms with		
(1 _× .	- 5 x u - 2 u	= 2u + 3 - 1	2. Simp	lif w	ande	move to leverything e	e/t Se	
4 4 .	-5xy-2	= 3	Subtra 24 Simp Subtra	4 4×	on	rght.		
	3 X4 -2 4.	+ 9 * = 1 - 9	XIDIMOL	 [4				
tx /	1 xy-2y -5-x-21	= 3-4x	Factor o Divide I Simplif	014 4 "4"	-7.			
4	(5x-2)	3-4×	Simplif	Q P	J			
	-5x-2	-5x-2						
	ψ ₌	3-4×	Replace	· (.):4	h f-1(x)			
-	/	3-4x -5x-2						

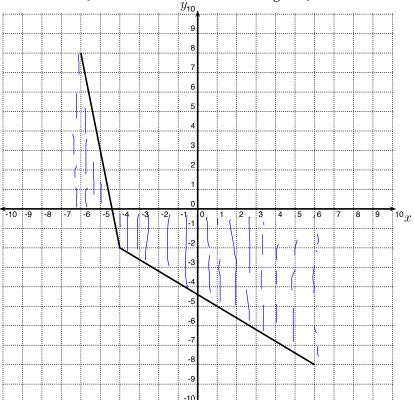
28. The graph of the one-to-one function f is shown below. Find the domain of f^{-1} .

29. Joni invests \$4000 at an interest rate of 4% per year compounded continuously. How much time will it take for the value of the investment to quadruple? Round your answer to the nearest tenth of a year.

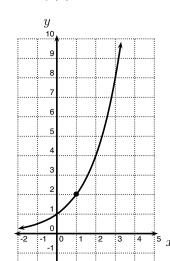
Possibilities:

$$A = 4.4000$$
 $A = Pert$
 $A = Pert = 16000$


(b) 27.5 years
$$16000 = 40000$$
 Divide hu


$$A = Pe^{-\frac{1}{4}} = \frac{16000}{16000} = \frac{0.044}{1000} = \frac{0.044}{1000} = \frac{0.044}{1000} = \frac{10(4)}{1000} =$$

$$\angle = \frac{\ln(4)}{0.04}$$


$$\ln(e^{\times}) = x$$

30. The graph of the one-to-one function f is shown below. Find the range of f^{-1} .

31. The graph of an exponential function, $f(x) = a^x$ is shown below. Find a.

Note f(1)=2 by the graph below. However $f(1)=a^{1}=a$ So a=f(1)=2that is, a=2

- (a) 4
- (b) $\frac{1}{2}$
- (c) 3
- (d) $\frac{1}{3}$
- (e) 2

32. Solve.

$$\log_8(x-5) + \log_8(x+2) = 1$$

Possibilities:

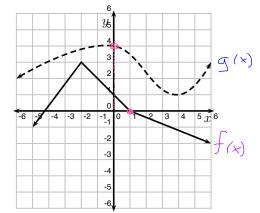
(a)
$$x_1 = 6$$

(b)
$$x_1 = 5$$
 and $x_2 = -2$

(c)
$$x_1 = 5$$

(d)
$$x_1 = 6$$
 and $x_2 = 3$

(e)
$$x_1 = 6$$
 and $x_2 = -3$


33. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Use the graphs to evaluate g(f(1)).

Possibilities:

(c)
$$-2$$

(e) 3

See work from problem #7

34. Let $f(x) = \log_4(-15 - x)$. Find the domain of f(x).

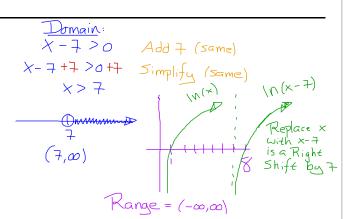
(a)
$$(-\infty, -15]$$

$$-15-x>0$$
 Add x (some)

(b)
$$(-15, 15)$$

(c)
$$[-15, 4)$$

$$-15^{-} > x$$


(d)
$$(4, \infty)$$

(e)
$$(-\infty, -15)$$

35. Find the domain and range of $y = \ln(x - 7)$.

Possibilities:

- (a) Domain: $(-\infty, \infty)$ Range: $[7, \infty)$
- (b) Domain: $(-\infty, \infty)$ Range: $(7, \infty)$
- (c) Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$
- (d) Domain: $[7, \infty)$ Range: $(-\infty, \infty)$
- (e) Domain: $(7, \infty)$ Range: $(-\infty, \infty)$

36.

$$\log_5\left(\frac{x^3\sqrt{z}}{y^2}\right) = \log_5\left(\frac{m}{z}\right) = \log_2\left(m\right) - \log_2\left(n\right)$$

Possibilities:

(a)
$$3\log_5(x) + \frac{1}{2}\log_5(z) - 2\log_5(y)$$

Possibilities:
$$|o_{3}(m, \lambda)| = |o_{3}(m) + |o_{3}(m)| = |o_{3}(x^{3}) + |o_{3}(x^{2}) - |o_{3}(x^{2})|$$
(a) $3\log_{5}(x) + \frac{1}{2}\log_{5}(z) - 2\log_{5}(y)$

$$|o_{3}(m, \lambda)| = |o_{3}(m) + |o_{3}(x^{2})| = |o_{3}(x^{3}) + |o_{3}(x^{2})| = |o_{3}(x^{2}) + |o_{3}(x^{2})|$$

(b)
$$\frac{(3\log_5(x))\left(\frac{1}{2}\log_5(z)\right)}{2\log_5(y)}$$

(b)
$$\frac{(3\log_{5}(x))\left(\frac{1}{2}\log_{5}(z)\right)}{2\log_{5}(y)} \qquad \log_{2}(\mathbf{M}^{r}) = \log_{2}(\mathbf{M}^{r}) = \log_{2}(x) + \frac{1}{2}\log_{5}(x) - 2\log_{5}(y)$$

(c)
$$3x + \frac{1}{2}z - 2y$$

(d)
$$2\log_5(y) - 3\log_5(x) - \frac{1}{2}\log_5(z)$$

(e)
$$\frac{(3x)\left(\frac{1}{2}z\right)}{2y}$$

37. Solve for x.

Possibilities:

(a)
$$x = \frac{16}{8 - \log(5)}$$

(b)
$$x = 10^2 - 5$$

(c)
$$x = \frac{10^{16}}{8} - 5$$

(d)
$$x = \frac{10^{16} - 5}{8}$$

(e)
$$x = \frac{16}{8\log(5)}$$

$$8\log(x+5) = 16$$
 Divide by 8

$$\frac{8 \log (x+5)}{8} = \frac{16}{8}$$
 Simplify

$$|o_{\alpha}(x+5)| = 2$$
 $|o_{\alpha}| = |o_{\alpha}|$

$$\log_{10}(x+s) = 2 \qquad y = \log_{10}(x) \qquad \text{means} \quad a^{2} = x$$

$$|0^{2}-5^{2}=\times$$

$$|x=10^{2}-5^{2}|$$

38. Let
$$f(x) = 2x + 1$$
. Find $f^{-1}(5)$.

Possibilities:

(a) 12

(b) 1

(c) 11

(d) 3

(e) 2

$$f(x) = 2x + 1$$

$$f(x) = 2x$$

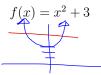
39. Let f(x) = 2x - 5 and $g(x) = x^2$. Find g(f(x)).

Possibilities:
(a)
$$4x^2 - 20x + 25$$

(b) $2x^2 - 5$
(c) $2x^2 - 5$
(d) $4x^2 - 20x + 25$
(e) $2x^2 - 5$

(c)
$$4x^2 - 25$$

(d)
$$2x^3 - 5x^2$$


(e)
$$4x^2 + 25$$

40. Let f(x) = 3x + 4. Find the average rate of change of f(x) from x = -5 to x = 9.

Possibilities:

(a) 5 Note:
$$f(q) = 3 \cdot 9 + 4 = 27 + 4 = 31$$

(b) 3 and $f(-s) = 3 \cdot (-s) + 4 = -15 + 4 = -11$
(c) 6
(d) 2 Rate of $=$ $\frac{f(b) - f(a)}{b - a} = \frac{f(9) - f(-5)}{9 - (-5)} = \frac{31 - (-11)}{9 + 5} = \frac{31 + 11}{9 + 5} = \frac{42}{14} = 3$

41. Which of the following functions are one-to-one?

$g(x) = x^3$

one-to-one

$$h(x) = 3x - 9$$

One-to-one

Possibilities:

NOT ONE-TO-ONE

- (a) Only f(x) and g(x) are one-to-one.
- (b) Only g(x) and h(x) are one-to-one.
- (c) Only h(x) is one-to-one.
- (d) None of the functions are one-to-one.
- (e) All of the functions are one-to-one.
- 42. Use a calculator to approximate $log_{13}(15)$. Your answer should be correct to 5 decimal places.

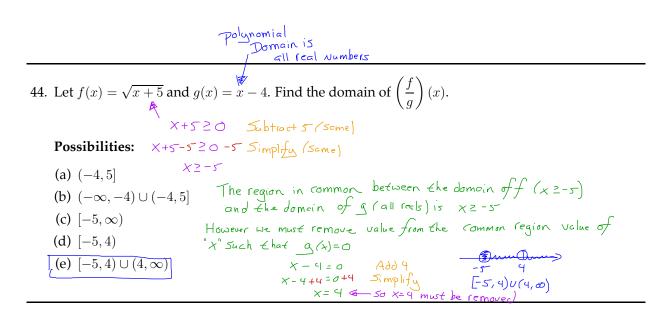
Possibilities:

- (c) 0.94716
- (d) 1.15385
- (e) 1.76611

$$\log_{13}(15) = \frac{\log_{13}(15)}{\log_{13}(13)} = 1.05579$$

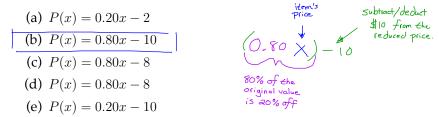
43. Let
$$f(x) = 3x^2 + 2x + 1$$
. Find $\frac{f(x+h) - f(x)}{h}$

$$|S^{\pm}(x+h)| = 3(x+h)^{2} + 2(x+h) + |$$


$$= 3(x+h)(x+h) + 2x + 2n + |$$

$$= 3(x^{2} + xh + hx + h^{2}) + 2x + 2h + |$$

$$= 3(x^{2} + 2xh + h^{2}) + 2x + 2h + |$$


$$= 3x^{2} + 6xh + 3h^{2} + 2x + 2h + |$$

$$\frac{f(x+h)-f(x)}{h} = \frac{(3x^{2}+6xh+3h^{2}+2x+2h+1)-(3x^{2}+2x+1)}{h} = \frac{3x^{2}+6xh+3h^{2}+2x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+2h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+3h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+3h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+3h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+3h+1}{h} = \frac{3x^{2}+6xh+3h^{2}+3x+3h+1}{h} = \frac{3x^{2}+6xh+3h+1}{h} = \frac{3x^{2}+6xh+3h+1}{h} = \frac{3x^{2}+6xh+3h+1}{h} = \frac{3x^{2}+6xh+3h+1}{h} = \frac{3x^{2}$$

45. You are going to purchase some memory for your computer. The original price of the memory is x dollars You have two coupons. The first coupon allows you to take 20% off of the price. The second coupon allows you to deduct \$10 from the price. Suppose that you use the first coupon to take 20% off and then you use the second coupon to deduct \$10 from the price. Find a formula for the final price P in terms of x.

Possibilities:

46. Find the inverse function of f(x) = 5x - 3.

1st Replace
$$f(x)$$
 with $y = 5x - 3$
 2^{nd} Interchange x and $y = 5y - 3$
 3^{nd} Solve for $y = 5y - 3$
 $x = 5y - 3$

Add $y = 5y - 3 + 3$
 $x = 5y - 3 + 3$

Simplify $x + 3 = 5y - 3 + 3$

Divide by $y = 5y - 3 + 3$

$$x+3 = 5u$$

47. Explain how the graph of $g(x) = (x+1)^3 - 9$ is obtained from the graph of $f(x) = x^3$.

Possibilities:

- (a) Shift left 9 units and shift down 1 units.
- (b) Shift right 1 units and shift up 9 units.
- (c) Shift right 1 units and shift down 9 units.
- (d) Shift right 9 units and shift up 1 units.
- (e) Shift left 1 units and shift down 9 units.

Algebra	New function	Geometry
Replace X With XH	f(x+1)= (x+1)3	Shift left and with
Subtract 9	f(x+1)-9=(x+1) ³ -9	Shift Down
	VOTE: This is g(x)	9 Units
	11 - 1113 13 (4/17)	

48. Express the equation in logarithmic form.

loa (x) Mean

 $\alpha^{5}=\times$

Possibilities:

(a)
$$\log_{512} 3 = 8$$

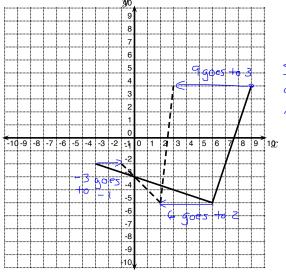
(b)
$$\log_3 8 = 512$$

(c)
$$\log_3 512 = 8$$

(d)
$$\log_8 3 = 512$$

(e)
$$\log_8 512 = 3$$

- 1008 (512)=3
- 49. Which of the following statements are true?


$$\checkmark (I) 2^{\log_2(5)} = 5 \qquad \bigcirc \stackrel{\log_2(5)}{\longrightarrow} = \times$$

 $\sqrt{\text{(II)}} \log(\frac{a}{b}) = \log(a) - \log(b)$ for all positive a and b.

 \checkmark (III) $\ln(a+b) = (\ln(a))(\ln(b))$ for all positive a and b.

- In (215)= In (7) = 1.945910... In (2). In (5) = 1.115577
- (a) Only (I) and (II) are true.
- (b) Only (III) is true.
- (c) Only (I) and (III) are true.
- (d) Only (I) is true.
- (e) Statements (I), (II), and (III) are all true.

50. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Find a formula for g(x).

Scaled horizontally by a factor of 1/3.

Algebraically this is a replacement of x with 3x.

Possibilities:

(a)
$$g(x) = f\left(\frac{1}{3}x\right)$$

(b)
$$g(x) = f(3x)$$

(c)
$$g(x) = \frac{1}{3}f(x)$$

(d)
$$g(x) = -3f(x)$$

(e)
$$g(x) = 3f(x)$$

51. Let $f(x) = \log_4(8 - x)$. Find the domain of f(x).

Possibilities:

(a)
$$(4, \infty)$$

(c)
$$(-8,8)$$

(d)
$$(-\infty, 8]$$

(e)
$$(-\infty, 8)$$

52. Use a calculator to approximate $\log_{13}(12)$. Your answer should be correct to 5 decimal places.

 $\log_{13}(12) = \frac{\ln(12)}{\ln(13)} = 0.96879...$