MA 109 _ College Algebra EXAM 4 -REVIEW
Name: \quad Sec.: \quad Find the vertex of $y=4 x^{2}-40 x+102 . \quad(5,2) \quad$ See work on next page

2. Let $f(x)=|x+4|-6$. Find the average rate of change of $f(x)$ between $x=-8$ and $x=9$. Possibilities:

(a) $17 / 91^{\text {st }}$ Compute $f(9)=|9+4|-6=|13|-6=13-6=7$
(b) -9
(c) $9 / 17$
(d) $-9 / 17$
(e) 9
and $f(-8)=|-8+4|-6=|-4|-6=4-6=-2$
The Average
$\begin{aligned} & \text { The Average } \\ & \text { change }\end{aligned}=\frac{f(b)-f(c)}{b-a}=\frac{f(a)-f(-8)}{a-(-8)}=\frac{7-(-2)}{9-(-8)}=\frac{7+2}{9+8}=\frac{9}{17}$
$m=6 / 7$ so $\perp m=-7 / 6 \quad y$-intercept 2
3. Find an equation for the line that is perpendicular to $y \stackrel{6}{=} \frac{6}{7} x+5$ and contains the point $(0,13)$.
Slope - intercept form $\frac{y_{1}=m x+b}{\sqrt{y=-7 / 6} x+13}$
4. Solve.
$\log _{8}(x-5)+\log _{8}(x+2)=1$

Possibilities:

(a) $x_{1}=6$ and $x_{2}=3$
(b) $x_{1}=6$ and $x_{2}=-3$
(c) $x_{1}=5$
(d) $x_{1}=5$ and $x_{2}=-2$
(e) $x_{1}=6$ See Review \#3 problem \#7
5. Suppose you want to graph $x^{3}-3 y=x^{2}$ on your graphing calculator. What should you enter into your calculator?

$$
y_{1}=\left(x^{2}-x^{3}\right) /(-3)
$$

6. Suppose you want to graph $(y-1)(x+14)=x$ on your graphing calculator. What should you enter into your calculator?

$$
\begin{aligned}
& \frac{-3 y}{-3}=\frac{x^{2}-x^{3}}{-3} \\
& y=\frac{x^{2}-x^{3}}{-3}
\end{aligned}
$$

$\frac{(y-1)(x+14)}{x+14}=\frac{x}{x+14}$ Simplify $\quad y=\frac{x}{x+14}+1$ $y-1=\frac{x}{x+14} \quad$ Add 1

1
\#1 $f(x)=4 x^{2}-40 x+102$

$$
\begin{aligned}
& \text { lIst Compute } \frac{-b}{2 a}=\frac{-(-40)}{2(4)}=\frac{40}{8}=5 \\
& \text { 2 nd Compute } \begin{aligned}
f\left(\frac{b}{2 a}\right) & =f(5)=4 \cdot 5^{2}-40 \cdot 5+102=4.25-200+102 \\
& =100-200+102=-100+102=2
\end{aligned}
\end{aligned}
$$

$$
\text { Consequently, Vertex }=\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)=(5,2)
$$

7. Find the vertex of $y=4 x^{2}-40 x+102$. (5,2) See Problem \#1
8. Which of the following statements are true?
(I) The graph of $P(x)=x^{3}-4 x^{2}+x+6$ has an x-intercept at $(1,0) \quad \times$
(II) The graph of $P(x)=x^{3}-4 x^{2}+x+6$ has an x-intercept at $(-1,0) \quad \checkmark$
(III) $(x-1)$ is a factor of $P(x)=x^{3}-4 x^{2}+x+6 . \quad \times$
(IV) $(x+1)$ is a factor of $P(x)=x^{3}-4 x^{2}+x+6$.

Possibilities:
(a) Only (II) and (III) are true.
(b) Only (II) and (IV) are true.

$$
\text { and }(x-1) \text { is not a factor of } P(x)
$$

(c) Only (I) and (IV) are true.
(d) Only (I) and (III) are true.

$$
\text { Note: } P(1)=1^{3}-4(1)^{2}+1+6=1-4+1+6=-3+1+6=-2+6=4
$$

$$
\text { so }(1,0) \text { is wot an } x \text {-intercept }
$$

$$
P(-1)=(-1)^{3}-4(-1)^{2}+(-1)+6=-1-4-1+6=-5-1+6
$$

(e) None of the statements are true.

$$
\text { So }(-1,0) \text { is en } x \text {-intercept }
$$

$$
\text { and }(x-(-1))=(x+1) \text { is a factar of } P(t)
$$

9. Does the graph of $y=3 x^{2}+12 x-5$ have a maximum or a minimum? What is it? minimum parshole open upword since $a=3>0$ therefore the graph hes a minimum
10. What quantity, x, of a 55% acid solution must be mixed with a 30% acid solution to produce 800 mL of a 36.25% solution?

Possibilities:
(a) 300 mL
(b) 200 mL
(c) 700 mL
(d) 500 mL
(e) 600 mL
11. Find all real solutions or state that there are NONE.

$$
\begin{array}{ll}
\sqrt{x-8}=x+7 . & \text { NONE } \\
& \text { See work on Next page }
\end{array}
$$

12. Find all real solutions or state that there are NONE.

$$
x=\ln (2 / a)+8
$$

$$
9 e^{x-8}=2 . \quad \text { See work on vext page }
$$

$$
\begin{aligned}
& \text { Total amounts: } x+y=800 \text { by }-0.30 \\
& \text { Acid a mount } 5: 0.55 x+0.30 y=(0.3625)(800) \\
& \text { Elimination method } \\
& -0.30 x-0.30 y=-240 \\
& \begin{array}{l}
0.55 x+0.30 y=290 \\
0.25 x+0 y=50
\end{array} \quad \text { 종 } 200 \mathrm{~mL} \\
& \frac{0.25 x}{0.25}=\frac{50}{0.25}
\end{aligned}
$$

\#11 $\sqrt[2]{x-8}=x+7 \quad \sqrt[n]{a}=b$ means $b^{n}=a$

$$
(x+7)^{2}=x-8 \quad \text { Simplify } \quad a^{2}=a \cdot a \quad \text { \& OI } L
$$

$$
(x+7)(x+7)=x-8
$$

$$
x^{2}+7 x+7 x+49=x-8
$$

$$
x^{2}+14 x+49=x-8
$$

$$
x^{2}+14 x+49-x=x-8-x \text { Simplify }
$$

$$
x^{2}+13 x+49=-8 \quad \text { Add } 8
$$

$$
x^{2}+13 x+49+8=-8+8 \quad \text { Simplify }
$$

$$
x^{2}+13 x+57=0
$$

Note discriminant $=b^{2}-4 a c=13^{2}-4(1)(57)=169-228=-59<0$
Since the discriminant is less than zero there are vo real solutions.
\#12 $9 e^{x-8}=2$ Divide by 9

$$
\begin{gathered}
\frac{9 e^{x-8}}{9}=\frac{2}{9} \quad \text { Simplify } \\
e^{x-8}=2 / 9 \quad \text { Apply ln } \\
\ln \left(e^{x-8}\right)=\ln \left(\frac{2}{9}\right) \quad \ln \left(e^{x}\right)=x \\
x-8=\ln (2 / 9) \quad \text { Add } 8 \\
x-8+8=\ln (2 / 9)+8 \quad \text { Simplify } \\
x=\ln (2 / 9)+8
\end{gathered}
$$

13. Solve the equation for a.

$$
\begin{gathered}
4 x-16=-2+a . \text { Add } 2 \\
4 x-16+2=-2+a+2 \text { Simplify }
\end{gathered} \quad \not \quad \begin{array}{r}
4 x-14=a \\
a=4 x-14
\end{array}
$$

14. Explain how the graph of $g(x)=(x+5)^{3}-7$ is obtained from the graph of $f(x)=x^{3}$.

Possibilities:
(a) Shift right 5 units and shift down 7 units.
(b) Shift left 7 units and shift down 5 units.
(c) Shift right 7 units and shift up 5 units.
(d) Shift right 5 units and shift up 7 units.
(e) Shift left 5 units and shift down 7 units.

Algebra	New Function	Geometry	
Replacex with $x+5$	$f(x+5)=(x+5)^{3}$	Shift left 5 units	
Subtract 7	$f(x+5)-7=(x+5)^{3}-7$ A	Shift down 7units	
Note: This is $g(x)$			

15. Find the slope of the line through the points $(1,4)^{x_{1}}$, and $\left(\begin{array}{l}x_{2} \\ (-9,4)\end{array} \mathbf{y}_{2} . m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-4}{-9-1}=\frac{0}{-10}=0\right.$
16. Express the equation in logarithmic form.

$$
\begin{array}{r}
8^{3}=512 \quad \text { Recall: } y=\log _{a}(x) \text { means } a^{y}=x \\
3=\log _{8}(5 / 2) \rightleftharpoons 8^{3}=512
\end{array}
$$

Possibilities:
(a) $\log _{8} 512=3$
(b) $\log _{8} 3=512$
(c) $\log _{3} 512=8$
(d) $\log _{3} 8=512$
(e) $\log _{512} 3=8$
17. The endpoints of a diameter of a circle are $A(8,-9)$ and $B(-6,-2)$. Find the center of the circle.

Possibilities:
$\begin{aligned} & \text { (a) }(-7,7 / 2) \\ & \text { Center of the } \\ & \text { (b) }(1,-11 / 2)\end{aligned} \quad \begin{aligned} & \text { midpoint } \\ & \text { Circle } \\ & \operatorname{from}_{\text {to } A}\end{aligned}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{8+(-6)}{2}, \frac{-9+-2}{2}\right)$
(c) $(0,7 \sqrt{5})$
(d) $(7 \sqrt{5}, 0)$
(e) $(7,-7 / 2)$

$$
=\left(\frac{2}{2}, \frac{-11}{2}\right)=\left(1,-\frac{11}{2}\right)
$$

18. Carol has $\$ 4000$. She invests x dollars at a simple interest rate of 4% and the rest of her money at a simple interest rate of 6%. After one year, the total interest earned on these investments is $\$ 180.00$. Which of the equations below would you solve to find x ?
Possibilities: Let x be the amount invested at 4%
(a) $\frac{x}{4}+\frac{4000-x}{6}=180.00$ Let y be the amount inverted at 6%
(b) $4 x+6(4000-x)=180.00$ Total Amount invested: $x+y=4000 \xrightarrow{\substack{\text { Solve } \\ \text { for } \\ y}} y=4000-x$
(c) $0.04 x \times 0.06(4000-x)=180.00$

Interest Amount: $\underbrace{0.04 x}+\underbrace{0.06 y}=180$
(d) $0.04 x+0.06(4000-x)=180.00$
(e) $\frac{x}{0.04}+\frac{4000-x}{0.06}=180.00$
$0.04 x+0.06(4000-x)=180$ Interest
$\begin{aligned} & \text { Interest } \\ & \text { from the } 6 \% \\ & \text { from the } 4 \% \text { account } \\ & \text { account }\end{aligned}$ account
19. Solve the inequality $x^{2}-5 x-15 \geq 9$. Write the solution set in interval notation.

(a) $(-\infty,-8] \cup[3, \infty)-5 x-15-9 \geq 9-9 \quad$ Simplify (same) Answer: $(-\infty,-3] \cup[8, \infty)$
(b) $(-\infty,-3] \cup[8, \infty)$
(c) $[-3,8] \quad(x-8)(x+3) \geq 0$
(d) $[9, \infty)$ Critical Numbers $(x-8)(x+3)=0$
(e) $(-\infty, 9]$

$$
\begin{array}{rrr}
x-8=0 & \text { or } & x+3=0 \\
+8+8 & & -3-3 \\
x=8 & & x=-3
\end{array}
$$

20. Which of the following statements are true?
(I) $2^{\log _{2}(5)}=5$
(II) $\log \left(\frac{a}{b}\right)=\log (a)-\log (b)$ for all positive a and b.
(III) $\ln (a+b)=(\ln (a))(\ln (b))$ for all positive a and b.

Possibilities:

(a) Only (III) is true.
(b) Only (I) and (III) are true.

(c) Only (I) is true.
(d) Only (I) and (II) are true.
(e) Statements (I), (II), and (III) are all true.
21. Find a formula for the parabola with vertex $(-5,6)$ and that passes through the point $(-4,9)$.

22. A ball is thrown straight upward at an initial speed of 240 feet per second. From Physics, we know that the ball will reach a height of h feet after t seconds where h and t are related by the following formula:

$$
h=-16 t^{2}+240 t .
$$

In order to determine when the ball hits the ground, you need to:

Possibilities:

(a) Find the positive h intercept of the graph of $h=-16 t^{2}+240 t$.
(b) Calculate the average rate of change of h with respect to t.
(c) Find the slope of a line.
(d) Find the positive t intercept of the graph of $h=-16 t^{2}+240 t$. t-intercept is when
(d) $h=0$. height Zero
(e) Find the intervals where the graph of h is increasing and where it is decreasing. means the ground.
23. Let $f(x)=\frac{1}{\sqrt{x-2}}$. Find the domain of $f(x)$.

Possibilities: $\quad 1^{\frac{5 t}{t}}$ Need $\sqrt{x-2} \neq 0$ because of the fraction $2^{\text {nd }}$ Need $x-2 \geq 0$ because of the
(a) $[2, \infty) \quad$ So solve: $\sqrt[2]{x-2}=0 \quad n / a \quad b^{n}=a \quad$ square root. So Solve
(b) $(-2, \infty)$
(c) $(-\infty, 2]$
(d) $(2, \infty)$
(e) $(-\infty,-2)$

So Solve: $\sqrt[2]{x-2}=0 \quad \sqrt[n]{a}=b$ means $b^{n}=a$

$$
\begin{gathered}
x-2+2 \geq 0+2 \text { Simplify } x \gg x>
\end{gathered}
$$ $x-2+2 \geq 0+2$ simplify x $x \geq 2$

However $x \neq 2$ so the domain of $f(x)$ is $x>2$
$(2,00)$
24. Solve the inequality and graph the solution set on the real number line.

$$
|x-2| \leq 4 \quad \text { Let } \quad \omega=x-2 \text { then } \quad|\omega| \leq 4
$$

Possibilities:

(d)

$$
\text { So }-4 \leq \omega \leq 4 \text { Replace w with } x-2
$$

$$
-4 \leq x-2 \leq 4 \text { Add } 2 \text { (scme) }
$$

$$
\begin{gathered}
-4+2 \leq x-2+2 \leq 4+2 \\
-2 \leq x \leq 6
\end{gathered}
$$

> Vertex $=\left(-5,6^{k}\right)$ point $=(-4,9)$

19
$+\quad y$
Standard Form of a quadratic function: $y=a(x-h)^{2}+k \quad h=-5, k=6$ A " \quad * $\quad y=a\left(x-\left(-5^{\prime}\right)\right)^{2}+6$ Simplify
 the value for $\quad \bar{a}=a(-4+5)^{2}+6$ Simplify
"
$9=a(1)^{2}+6$
$9=a+6 \quad$ Subtract 6
$9-6=a+6-6$ Simplify
$3=a$
$a=3$
25. Let $f(x)=2 x+7$. Find $f^{-1}(5) . \quad y=f(x)$ means $f^{-1}(y)=x$

(a) $6 \quad$ However, $f(x)=2 x+7$ so we have
(b) 17
(c) -2
(d) 24

$$
5=f(x)=2 x+7
$$

(e) -1

$$
\begin{array}{rlrl}
5 & =2 x+7 & & \text { Subtiact } 7 \\
5-7 & =2 x+7-7 & \text { Simplify } \\
-2 & =2 x & & \text { Divide by } 2 \\
-\frac{2}{2} & =\frac{2 x}{2} & & \text { Simplify } \\
-1 & =x & & \text { Therefore } f^{-1}(5)=-1
\end{array}
$$

26. Which of the following statements are true?
(I) If $P(x)=3 x^{3}+x-15 x^{2}-5$, then $P(5)=0$. TRuE
(II) $(5,0)$ is an x-intercept on the graph of $y=3 x^{3}+x-15 x^{2}-5$. TRUE
(III) The remainder of the division problem $\frac{3 x^{3}+x-15 x^{2}-5}{x-5}$ is zero. TRuE
(IV) $(x-5)$ is a factor of $3 x^{3}+x-15 x^{2}-5$. TRUE

Possibilities:

(a) Only (III) and (VI) are true.

Note $P(5)=3 \cdot 5^{3}+5-15 \cdot 5^{2}-5$

$$
=3.125+5-15.25-5
$$

(b) Only (I) and (III) are true.
(c) (I), (II), (III), and (IV) are all true.
(d) Only (I) and (II) are true.
(e) None of the statements are true.
$=375+5-375-5$
$=380-375-5$
$=5-5$
$=0$
27. How many solutions are there for each equation?

Possibilities:

(II) $(x+5)^{3}=1$
(a) Equation (I) has no solutions, and equation

(b) Equation (I) has no solutions, and equation (II) has 1 solution.
(c) Equation (I) has 2 solutions, and equation (II) has 1 solution.
(d) Equation (I) has 2 solutions, and equation (II) has 3 solutions.
(e) Equation (I) has 1 solution, and equation (II) has 3 solutions.
28. Let $f(x)=\frac{x-3}{x-4}$. Find the x and y intercepts of the graph of $y=f(x)$.

Possibilities:
x-intercept: $y=0$
$0=\frac{x-3}{x-4} \quad$ multiply by $x-4$
4) $0=\frac{x-3}{x-4}(x-4)$ Simplify
$0=x-3$ Add 3
$0+3=x-3+3$ Simplify
$3=x$
$x=3 \quad x$-intercept: $(3,0)$
29. Find the perimeter of the parallelogram ABCD with vertices $\mathrm{A}(1,4), \mathrm{B}(14,4), \mathrm{C}(17,9)$, and $\mathrm{D}(4,9)$.

Possibilities:
(a) 36 units
(b) 65 units
(c) $65 / 2$ units
(d) 238 units
(e) $26+2 \sqrt{34}$ units

$$
\text { Perimeter }=13+\sqrt{34}+13+\sqrt{34}=26+2 \sqrt{34} \text { units }
$$

30. If the GGMC corporation produces x kilograms of gadgets, then their revenue, in dollars, is given by $R(x)=100+800 x-.5 x^{2}$. What is the maximum revenue and how many kilograms of gadgets should be manufactures to obtain this maximum?
where the maximum
parabola paint $\$ 0$ Vertex ${ }^{\text {st }}$ Compute: $\frac{-b}{2 a}=\frac{-800}{2(-0.5)}=\frac{-800}{-1}=8000$
opens downward
because $a=-0.5<0$
$2^{\text {nd }}$ Compute

$$
\begin{aligned}
R\left(\frac{-b}{2 c}\right)=R(800) & =100+800 \cdot 800-0.5(800)^{2} \\
& =100+640,000-370(000
\end{aligned}
$$

Maximum Revenue: 320,000
$=\frac{320,100}{4}$
$=\frac{320,000}{}$
Kilograms of Gadgets: \qquad 800
31. Let $f(x)=3 x+2$. Find the average rate of change of $f(x)$ from $x=-5$ to $x \stackrel{\sqrt{6}}{=} 9$.

Possibilities: Short answer: For a line the average rate of change is the slope.
(a) 6 consequently, in this case we have 3 .
(b) 2 long answer: 1 list Compute $f(9)=3.9+2=27+2=29$

32. Solve.

$$
\log _{8}(x-5)+\log _{8}(x+2)=1
$$

Possibilities:

(a) $x_{1}=6$ and $x_{2}=-3$
See Review\# 3 problem \#7
Again (3)
(b) $x_{1}=6$ and $x_{2}=3$
(c) $x_{1}=5$ and $x_{2}=-2$
(d) $x_{1}=5$
(e) $x_{1}=6$
33. If the GGMC corporation produces x kilograms of gadgets, then their revenue, in dollars, is given by $R(x)=100+800 x-.3 x^{2}$. What is the maximum revenue and how many kilograms of gadgets should be manufactures to obtain this maximum?
Maximum Revenue: 533, 433.33
Kilograms of Gadgets: _ $1,333.33$
34. Find the quotient and the remainder of the division problem.

$$
\begin{array}{ll}
\text { Quotient }=6 x^{2}+27 x+113 & \frac{6 x^{3}+3 x^{2}+5 x-6}{x-4} \quad \text { See work on Next } \\
\text { Remainder }=446 & \text { page. }
\end{array}
$$

35. Find all the solutions of the system of equations.

$$
\text { Solutions: }(-3,-5) \text { and }(6,22)\left\{\begin{array}{l}
-3 x+y=4 \\
x^{2}-y=14
\end{array} \quad\right. \text { See work on Next }
$$

36. Let $f(x)=\ln (3 x+7)$. Find $f^{-1}(x) . \quad f^{-1}(x)=\frac{e^{x}-7}{3}$ See Review \#3 Problem $\# 12$ 37. Let $f(x)=2 e^{5 x+3}$. Find $f^{-1}(x) . \quad f^{-1}(x)=\frac{\ln \left(\frac{x}{2}\right)-3}{5}$ See Review \#3 Problem \#13
\#33 $R(x)=100+800 x-0.3 x^{2}$
 opens downward
because $a=-0.3<0 \quad 2^{\text {nd }}$ Compute $R\left(\frac{-b}{2 a}\right)=R\left(\frac{4000}{3}\right)=100+800 .\left(\frac{4000}{3}\right)-\frac{3}{10}\left(\frac{4000}{3}\right)^{2}$
 $=\frac{1,600,300}{3} \approx 533,433.33$

Maximum Revenue
\#34

$$
\begin{array}{r}
\quad \begin{array}{r}
6 x^{2}+27 x+113 \\
x - 4 \longdiv { 6 x ^ { 3 } + 3 x ^ { 2 } + 5 x - 6 } \\
-6 x^{3}+24 x^{2}+1 \\
27 x^{2}+5 x-6 \\
\frac{-27 x^{2}+108 x+1}{113 x-6} \\
\frac{-113 x+452}{446}
\end{array} \\
\text { - imination method }
\end{array}
$$

$$
\text { Quotient }=6 x^{2}+27 x+113
$$

$$
\text { Remainder }=446
$$

\# 35
$5 \quad y=22$
So another solution is $(6,22)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
-3 x+y=4 \\
x^{2}-y=14 \\
x^{2}-3 x+0 y=18
\end{array}\right. \\
& \text { Simplify } \\
& x^{2}-3 x=18 \quad \text { Subtract } 18 \\
& x^{2}-3 x-18=18-18 \text { Simplify If } x=-3 \text { then }-3(-3)+y=4 \\
& x^{2}-3 x-18=0 \quad \text { Factor } \\
& \text { Back Substitute to solve for y } \\
& \begin{array}{l}
\binom{\text { I will use equation } 1}{\text { either can be used }} \\
\text { If } x=-3 \text { then } \begin{array}{r}
-3(-3)+y=4 \\
9+y=4
\end{array}
\end{array} \\
& x^{2}-6 x+3 x-18=0 \quad-9 \quad-9 \\
& x(x-6)+3(x-6)=0 \quad y=-5 \\
& (x+3)(x-6)=0 \quad \text { Zero Produr Rule So one solution is }(-3,-5) \\
& \begin{aligned}
x+3 & =0 \\
-3 & -3
\end{aligned} \quad \text { or } \quad \begin{aligned}
x-6 & =0 \\
+6 & +6
\end{aligned} \quad \text { If } x=6 \text { then }-3-6+y=4 \\
& -3-3 \quad+6+6 \\
& x=-3 \quad x=6 \\
& -18+y=4 \\
& +18+18
\end{aligned}
$$

38. Which of the following functions are one-to-one?

$$
f(x)=x^{2}+3 \quad g(x)=x^{3} \quad h(x)=3 x-9
$$

Possibilities:

(a) Only $h(x)$ is one-to-one.

See Review \#3 Problem \#41
(b) Only $g(x)$ and $h(x)$ are one-to-one.
(c) Only $f(x)$ and $g(x)$ are one-to-one.
(d) None of the functions are one-to-one.
(e) All of the functions are one-to-one.
39. Find all real solutions or state that there are NONE.

$$
x=\frac{-22}{5} \quad-6 x-42=4 x+2 . \quad \text { See Work on Next }
$$

40. Let $P(x)=4 x^{3}+32 x^{2}-236 x+312$. Decide which of the statements below are true.

(a) (I) true; (II) false; (III) true; (IV) false; (V) true; (VI) false
(b) (I) false; (II) false; (III) false; (IV) true; (V) false; (VI) true
(c) (I) true; (II) true; (III) true; (IV) true; (V) true; (VI) true
(d) (I) true; (II) false; (III) false; (IV) true; (V) true; (VI) false
(e) (I) true; (II) false; (III) false; (IV) false; (V) false; (VI) false
41. Let $f(x)=5 x^{13}+2 x^{4}-6 x+1$. Determine the end behavior of $y=f(x)$.

Possibilities: positive leading coefficient
(a) $y \rightarrow 1$ as $x \rightarrow \infty$ and $y \rightarrow-\infty$ as $x \rightarrow-\infty$
(b) $y \rightarrow \infty$ as $x \rightarrow \infty$ and $y \rightarrow 1$ as $x \rightarrow-\infty$

(c) $y \rightarrow \infty$ as $x \rightarrow \infty$ and $y \rightarrow \infty$ as $x \rightarrow-\infty$
(d) $y \rightarrow-\infty$ as $x \rightarrow \infty$ and $y \rightarrow-\infty$ as $x \rightarrow-\infty$
(e) $y \rightarrow \infty$ as $x \rightarrow \infty$ and $y \rightarrow-\infty$ as $x \rightarrow-\infty$

42. Find the area of the triangle with vertices $A(-2,3), B(11,3)$, and $C(3,8)$.

Possibilities:

(a) 65 square units
(b) $13+\sqrt{89}+5 \sqrt{2}$ square units
(c) 66 square units
(d) 72 square units
(e) $65 / 2$ square units
43. The number of bacteria in a culture is modeled by the function $n(t)=50 e^{.45 t}$ where t is measured in hours. After how many hours will the number of bacteria reach 3000 ?

Possibilities:

(a) About 3.95 hours
(b) About 10.02 hours
(c) About 9.10 hours
(d) About 49.05 hours
(e) About 4.09 hours
until
44. Find the remainder of the divsion problem.

The remainder is zero
See work on and $P(a)=0$

$$
\frac{x^{4}-21 x^{3}+153 x^{2}-455 x+450}{x-9}
$$

Next Page

Let $P(x)=x^{4}-21 x^{3}+153 x^{2}-455 x+450$. What is $P(9)$? What is the relationship between $P(9)$ and the remainder? They are the same

$$
P_{0}=3000
$$

$$
r=0.08
$$

* $n=4$

45. If $\$ 3000$ is invested at an interest rate of 8% per year compounded quarterly, find the amount of the investment at the end of 13 years.

Possibilities:

(a) $\$ 3247.30$
(b) $\$ 4081.47$
(c) $\$ 3880.82$
(d) $\$ 8400.98$
(e) $\$ 164118.12$

$$
\begin{aligned}
& P(t)=P_{0}\left(1+\frac{r}{n}\right)^{n t} \\
& \begin{aligned}
P(13) & =3000\left(1+\frac{0.08}{4}\right)^{4.13} \\
& =3000(1.02)^{52} \\
& =8400.98
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.3000=50 e^{0.45 t} \text { Dividebus } 50 \quad t=\frac{\ln (60)}{0.45}\right) \\
3000
\end{array} \\
& \frac{3000}{50}=\frac{35 e^{0.45 t}}{50} \text { Simplify } \quad \epsilon \approx 9.10 \text { hours } \\
& 60=e^{0.45 t} \quad \text { Apply } \ln \\
& \ln (60)=\ln \left(e^{0.45 t}\right) \quad \ln \left(e^{x}\right)=x \\
& \ln (60)=0.45 t \text { Divideby } 0.45 \\
& \frac{\ln (60)}{0.45}=\frac{0.45 t}{0.45} \text { simplifu }
\end{aligned}
$$

46. How many solutions does the following system of equation have?

$$
\left\{\begin{array}{l}
\text { Elimination multiply } \\
3 x+8 y=16 \\
6 x-16 y=32
\end{array}\right.
$$

$$
3\left(\frac{16}{3}\right)+8 y=16
$$

Possibilities:

(a) No solutions
(b) One solution
(c) Two solutions
(d) Three solutions
(e) Infinitely many solutions
$16+8 y=16$
$16+8 y-16=16-16$
$8 y=0$

$$
\begin{aligned}
& \frac{8 y}{8}=\frac{0}{8} \quad\left(\frac{16}{3}, 0\right) \quad \begin{array}{l}
x=\frac{16}{3} \\
y=0
\end{array} \quad \text { one solution }
\end{aligned}
$$

$$
y=0
$$

$$
\begin{aligned}
& 6 x+16 y=32 \\
& 6 x-16 y=32 \\
& 12 x+0 y=64 \text { Simplify } \\
& 12 x=64 \text { Divide } \\
& \frac{12 x}{12}=\frac{64}{12} \text { Simplify }
\end{aligned}
$$

In

$$
f(x)
$$

$$
\text { Possibilities: }\left.\right|^{\text {st }} \text { Compute } f^{h}(x+h)=3(x+h)^{2}+5(x+h)=3(x+h)(x+h)+5 x+5 h
$$

$$
\text { (a) } \frac{3 h^{2}+5 h}{h} \quad=3\left(x^{2}+x h+h x+h^{2}\right)+5 x+5 h=3\left(x^{2}+2 x h+h^{2}\right)+5 x+5 h
$$

(b) $\frac{6 x h+3 h^{2}+10 x+5 h}{h}$

$$
\frac{f(x+h)-f(x)}{h}=\frac{\left(3 x^{2}+6 x h+3 h^{2}+5 x+5 h\right)-\left(3 x^{2}+57\right)}{h}
$$

(d) $-6 x-3 h-5$
(e) $3 h^{2}+5 h$

$$
\begin{aligned}
& =\frac{3 x^{2}+6 x h+3 h^{2}+5+5 h-3 x^{2}-5 x}{h}=\frac{6 x h+3 h^{2}+5 h}{h} \\
& =\frac{K(6 x+3 h+5)}{K}=6 x+3 h+5
\end{aligned}
$$

48. Suppose that the graph of $y=f(x)$ contains the point $(5,3)$. Find a point on the graph of $y=$ $2 f(x)-4$. $(5,2)$ See Review \# Problem \#2
49. Let $r(x)=\frac{x+1}{x^{2}-4}$. Find the horizontal asymptotes of $r(x)$.

Possibilities: Note bottom degree is larger than top degree
(a) $r(x)$ does not have any horizontal asymptotes.
(b) $y=1$
(c) $y=0$
(d) $x=2$ and $x=-2$
(e) $x=1$
50. The graph of the one-to-one function f is shown below. Find the domain of f^{-1}.

51. Find the remainder of the divsion problem.

$$
\text { Remainder }=2496 \quad \frac{x^{4}-16 x^{3}+71 x^{2}-56 x-144}{x+4}
$$

See work on vext page

Let $P(x)=x^{4}-16 x^{3}+71 x^{2}-56 x-144$. What is $P(-4)$? What is the relationship between $P(-4)$ and the remainder?
$P(-4)=2496$
52. $\left.\log \left(\frac{x^{-3}}{y^{5} z^{8}}\right)=\log _{a}\left(x^{-3}\right)-\log \left(\frac{m}{n}\right)=\log _{a}(m)-\log _{a}(N) z^{8}\right) \quad \log _{a}(m \cdot N)=\log _{a}(m)+\log _{a}(N)$

Possibilities:

$$
=\log \left(x^{-3}\right)-\left[\log \left(y^{5}\right)+\log \left(z^{8}\right)\right]
$$

(a) $-3 \log (x)+5 \log (y)-8 \log (z)$
(b) $-3 \log (x) / 5 \log (y) * 8 \log (z)$$\stackrel{\log \left(x^{-3}\right)-\log \left(y^{5}\right)-\log \left(z^{8}\right)}{=}$
$\frac{\text { (c) }-3 \log (x)-5 \log (y)+8 \log (z)}{\text { (d) }-3 \log (x)-5 \log (y)-8 \log (z)}=-3 \log (x)-5 \log (y)-8 \log (z)$
(e) $-3 \log (x) /(5 \log (y) * 8 \log (z)) \quad \log _{a}\left(m^{r}\right)=r \log _{a}(m)$

$$
\begin{aligned}
& \text { \#51| } x+4 \frac{x^{3}-20 x^{2}+151 x-660}{x^{4}-16 x^{3}+71 x^{2}-56 x-144} \\
& \begin{aligned}
-x^{4}-4 x^{3} \\
-20 x^{3}+71 x^{2}-56 x-144 \\
+20 x^{3}+80 x^{2} \\
151 x^{2}-56 x-144
\end{aligned} \\
& -151 x^{2}-604 x \\
& -660 x-144 \\
& +660 x+2640 \\
& 2496 \\
& \text { Note } P(-4)=(-4)^{4}-16(-4)^{3}+71(-4)^{2}-56(-4)-144 \\
& =256+16 \cdot 64+71 \cdot 16+224-144 \\
& =256+1024+1136+224-144 \\
& =1280+1136+224-144 \\
& =2416+224-144 \\
& =2640-144 \\
& =2496 \\
& \text { Same as Remainder }
\end{aligned}
$$

53. Let $f(x)=x^{2}-8 x+7$. Find the y-intercept(s) of the graph of $f(x)$.

Possibilities:

(a) Both $(7,0)$ and $(1,0)$
(b) Only $(0,7)$
(c) Only $(7,0)$
(d) Both $(0,7)$ and $(0,1)$
(e) Both $(-7,0)$ and $(-1,0)$
54. A ball is thrown straight upward at an initial speed of $200 \mathrm{ft} / \mathrm{sec}$. From Physics it is known that, after t seconds, the ball reaches a height h feet given by the formula

What is the maximum height reached by the ball?

$$
\begin{array}{ll}
h=-16 t^{2}+200 t .4 \text { this is a parabola so the maximum } \\
\text { height will be the y coordinate of the } \\
\text { yy the ball? } & \text { vertex }
\end{array}
$$

Possibilities:
(a) 7.55 ft
(b) 12.50 ft
(c) 6.25 ft
(d) 625.00 ft
(e) 677.30 ft

$$
1 \stackrel{s t}{-} \text { Compute } \frac{-b}{2 a}=\frac{-200}{2(-16)}=\frac{200}{32}=\frac{25}{4}
$$

$$
\begin{aligned}
& \text { So the maximum height occurs at } t=\frac{25}{4} \text { seconds and } \\
& \text { and the maximum height is } \begin{aligned}
& -16\left(\frac{25}{4}\right)^{2}+200\left(\frac{25}{4}\right) \\
& =-\frac{16}{1} \cdot \frac{625}{16}+\frac{5000}{4} \\
& =-625+1250 \\
& =625 \text { feet }
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{cccc}
x_{1} & y_{1} & x_{2} & y_{2} \\
-2 & 5)
\end{array}
$$

55. Find an equation for the line through the points $(-2,5)$ and $(5,14)$.

Possibilities: $\quad{ }^{5 \pm}$ Computethe slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{14-5}{5-(-2)}=\frac{14-5}{5+2}=\frac{9}{7}$
(a) $y+5=\frac{9}{7}(x-2)$
(b) $y-5=\frac{9}{7}(x-14)$
(c) $y-5=\frac{9}{7}(x+2)$
(d) $y-14=-\frac{7}{9}(x-5)$
(e) $y-2=-\frac{7}{9}(x-5)$

$$
\begin{aligned}
& \text { Use point-slopeform: } y-y_{1}=m\left(x-x_{1}\right) \\
& \text { use either point: }
\end{aligned}
$$

$$
\text { If one uses }(-2,5) \text { then } y-5=\frac{9}{7}(x-(-2))
$$

$$
y-5=\frac{9}{7}(x+5)
$$

56. Let $f(x)=\log _{2}(x+7)-3$. Find $f^{-1}(x)=2^{x+3}-7$ See workon Next page
57. You wish to purchase a new cell phone. You have a coupon for $\$ 10$ and the store is running a special which allows you to deduct 15% from the price. If the original price of the cell phone is 175 dollars, what is the final price if you apply the coupon and then apply the 15% discount.
$\$ 140.25$ See work from Revieu H3 Problem \#19

$$
\begin{aligned}
& \text { \#56 } f(x)=\log _{2}(x+7)-3 \quad \text { dst Replace } f(x) \text { with } y \\
& y=\log _{2}(x+7)-3 \quad 2 \frac{\text { nd }}{2} \text { Interchange } x \text { and } u \\
& x=\log _{2}(y+7)-3 \quad 3^{\text {rn }} \text { Solve for } y \\
& x=\log _{2}(y+7)-3 \quad \text { Add } 3 \\
& x+3=\log _{2}(y+7)-3+3 \quad \text { Simplify } \\
& x+3=\log _{2}(y+7) \quad y=\log _{a}(x) \text { means } a^{y}=x \\
& 2^{x+3}=y+7 \\
& \begin{array}{l}
2^{x+3}-7=y+7-7 \\
2^{x+3}-7=y
\end{array} \\
& f^{-1}(x)=2^{x+3}-7
\end{aligned}
$$

$$
\leftrightarrow P_{0}=5000
$$

- $r=0.05$

58. Joni invests $\$ 5000$ at an interest rate of 5% per year compounded continuously. How much time will it take for the value of the investment to quadruple? Round your answer to the nearest tenth of a year.
Possibilities:

$$
P(t)=P_{0} e^{r t}
$$

(a) 20.0 years

$$
\begin{array}{rlrl}
P(t) & =P_{0} e^{r t} & P(t) & =4.5000 \\
20000 & =5000000 \\
\frac{20000}{5000} & =\frac{55000 e^{6.05 t}}{5000} & & \text { Divide by } 5000 \\
4 & =e^{0.05 t} & & \text { Simplify } \\
& \text { Apply ln }
\end{array}
$$

(b) 32.2 years $20000=5000 e^{0.05 t}$
(c) 22.0 years
$\ln (4)=0.05 t$ Divide by 0.05
$\frac{\ln (4)}{0.05}=\frac{0.05 t}{0.05}$ Simplify
(d) 13.9 years
(e) 27.7 years
$t=\frac{\ln (4)}{0.05}$
$t \approx 27.7$ years
59. Let $r(x)=\frac{x^{2}+x-90}{x^{2}-9 x+18}$. Find the vertical asymptotes of $r(x)$. Note: $x^{2}-9 x+18=(x-6)(x-3)$

Possibilities:
(a) $x=9$ and $x=-10$
(b) $y=9$ and $y=-10$
(c) $x=3$ and $x=6$
(d) $y=3$ and $y=6$
(e) $r(x)$ does not have any vertical asymptotes.

$$
\text { so } x=6 ; x=3
$$

Need zero's of the denominator
that are not zero's of the
numerator denominator

Now Note: $x^{2}+x-90=(x+10)(x-9)$
so $x=-10!x=9$
are the only zero's of
the Numerator
60. Let $P(x)=8 x^{7}+4 x+7$. List all possible rational zeros of $P(x)$ given by the Rational Zeros Theorem (but do not check to see which are actually zeros).

Possibilities:
(a) $\pm 1, \pm 8, \pm 8 / 7$
Divisors of 8
\qquad
(b) $\pm 1, \pm 2, \pm 4, \pm 8, \pm 7, \pm 7 / 2, \pm 7 / 4, \pm 7 / 8$
$\pm 1, \pm 2, \pm 4, \pm 8$
$\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$
$\pm 7, \pm \frac{7}{2}, \leq \frac{7}{4}, \pm \frac{7}{8}$
$\pm 1, \pm 7$
$+$
(c) $\pm 1, \pm 1 / 2, \pm 1 / 4, \pm 1 / 8, \pm 7, \pm 7 / 2, \pm 7 / 4, \pm 7 / 8$
(d) $\pm 1, \pm 2, \pm 4, \pm 8, \pm 1 / 7, \pm 2 / 7, \pm 4 / 7, \pm 8 / 7$
(e) $\pm 1, \pm 8, \pm 7 / 8$
61. Let $f(x)=2 x^{2}+4 x$. Find $f(x+4)$.

Possibilities:

(a) $2 x^{2}+4 x+4$

$$
f(x+4)=2(x+4)^{2}+4(x+4)
$$

(b) $2 x^{2}+5 x+4$
$=2(x+4)(x+4)+4 x+16$
(c) $2 x^{2}+4 x+48$
$=2\left(x^{2}+4 x+4 x+16\right)+4 x+16$
(d) $96 x^{2}+192 x$
$=2\left(x^{2}+8 x+16\right)+4 x+16$
(e) $2 x^{2}+20 x+48$
$=2 x^{2}+16 x+32+4 x+16$
$=2 x^{2}+20 x+48$
$=2 x^{2}+20 x+48$
62. Let $f(x)=\frac{2 x+3}{4-5 x}$. Find $f^{-1}(x)=\frac{3-4 x}{-5 x-2}$ See Work on vext page
63. In the picture below, the graph of $y=f(x)$ is the solid graph, and the graph of $y=g(x)$ is the dashed graph. Find a formula for $g(x)$.

Possibilities:

(a) $g(x)=-3 f(x)$
(b) $g(x)=f\left(\frac{1}{3} x\right)$
(c) $g(x)=3 f(x)$
(d) $g(x)=\frac{1}{3} f(x)$
(e) $g(x)=f(3 x) \quad$ See Review \#3 Problem\#50
64. Find the vertex of $y=-4 x^{2}-24 x-29 . \quad(-3,7)$ See work on wext page
65. Does the graph of $y=3 x^{2}+12 x-5$ have a maximum or a minimum? What is it?

Parabola open up-ward 6 minimum because $a=3<0$
66. Let $P(x)=4 x^{2}+3 x+25$. Find the y-intercept of the graph of $y=P(x)$.

$$
\begin{aligned}
& y \text {-intercept: } x=0 \\
& \begin{aligned}
P(0) & =4 \cdot 0^{2}+3 \cdot 0+25 \\
& =0+0+25 \\
& =25
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \#62 } f(x)=\frac{2 x+3}{4-5 x} \text {, st Replace } f(x) \text { with } y \\
& y=\frac{2 x+3}{4-5 x} \quad \text { end Interchange } x \text { and } y \\
& x=\frac{2 y+3}{4-5 u} \quad 3 \text { solve for } y \\
& \begin{aligned}
x & =\frac{2 y+3}{4-5 y} \\
(4-5 y) x & =\frac{2 y+3}{4-5 y}(4-5 y) \text { Simplify }
\end{aligned} \\
& 4 x-5 x y=2 y+3 \quad \text { Subtract } 4 x \\
& 4 x-5 x y-4 x=2 y+3-4 x \text { Simplify } \\
& -5 x y=2 y+3-4 x \quad \text { Subtract au } \\
& -5 x y-2 y=2 y+3-4 x-2 y \text { Simplify } \\
& -5 x y-2 y=3-4 x \quad \text { Factor } \\
& (-5 x-2) y=3-4 x \quad \text { Divide by }-5 x-2 \\
& (-5 x-2) y=3-4 x \text { Simplify } \\
& -5 x-2 \quad-5 x-2 \\
& y=\frac{3-4 x}{-5 x-2} \\
& f^{-1}(x)=\frac{3-4 x}{-5 x-2} \\
& \text { \#64 } y=-4 x^{2}-24 x-29 \\
& 1^{5^{+}} \text {Compute } h=\frac{-b}{2 a}=\frac{-(-24)}{2(-4)}=-\frac{24}{8}=-3 \\
& 2^{n d} \text { Compute } k=-4(-3)^{2}-24(-3)-29=-4(9)+72-29 \\
& =-36+72-29=36-29=7 \\
& \text { So the vertex }=(-3,7)
\end{aligned}
$$

67.

$$
f(x)= \begin{cases}x+9 & \text { if } x \leq 4 \\ x-9 & \text { if } x>4\end{cases}
$$

Find $f(12)$.
Possibilities:
(a) 7
(b) 63
(c) 21
(d) Both 21 and 3.

Step l: Determine which expression to use
Is $12 \leq 4$? No!!! so don't use $x+9$
Is 12>4? Yes (i) so use $x-9$
(e) 3
68. Find all of the zeros of $P(x)=x^{3}+5 x^{2}+4 x$.

Possibilities: Need to find when $P(x)=0$
(a) $0,-1,4$
(b) $0,-1,-4$
(c) $-1,-4,1$

$$
\begin{array}{r}
x^{3}+5 x^{2}+4 x=0 \\
x\left(x^{2}+5 x+4\right)=0
\end{array}
$$

(d) $-1,-4,3$
(e) 0,1,4

$$
\begin{array}{rlrl}
x=0 & x+4 & =0 \\
-4 & \text { or } & \text { or } & x+1
\end{array}=0
$$

\qquad
Factor

$$
x(x+4)(x+1)=0 \text { zero Product Rule }
$$

\qquad

Therefore, $f(12)=12-9=3$

$$
3
$$

$$
x-x-1
$$

69. Simplify.

Possibilities:
(a) $18 x^{2}-45 x-104$
(b) $18 x^{2}-29 x-32$
(c) $18 x-48$
(d) $25 x+3$
(e) $18 x^{2}-45 x+24$
70. Find all real solutions or state that there are NONE.
$x=2$ and $x=5$

$$
x^{2}-7 x+13=3 . \quad \text { See work on Next }
$$

Page
71. Find all real solutions or state that there are NONE.

$$
\begin{aligned}
& x=-\frac{29}{5} \text { is the only } \\
& \text { real solution }
\end{aligned}
$$

$$
\begin{aligned}
& (9 x+8)(2 x-5)-16 x-64 \\
& 18 x^{2}-45 x+16 x-40-16 x-64 \text { Distribute } \\
& 18 x^{2}-45 x-10
\end{aligned}
$$

See work on Next

$$
\begin{align*}
& \pm 70 \quad x^{2}-7 x+13=3 \quad \text { Subtract } 3 \quad \text { Check } x=5 \\
& x^{2}-7 x+13-3=3-3 \quad \text { Simplify } \\
& 5^{2}-7(5)+13 \stackrel{?}{=} 3 \\
& x^{2}-7 x+10=0 \quad \text { Factor } \\
& 25-35+13 \stackrel{?}{=} 3 \\
& (x-5)(x-2)=0 \quad \text { Zero Product Rule } \\
& -10+13 \stackrel{?}{=} \\
& 3=3 \\
& \begin{array}{r}
x-5=0 \\
+5+5
\end{array} \quad \text { or } \quad \begin{array}{r}
x-2=0 \\
+2+2
\end{array} \\
& x=5 \quad x=2 \\
& \text { So } x=5 \text { is a solution } \\
& \text { Check } x=2 \\
& 2^{2}-7(2)+13 \geqslant 3 \\
& -10+13 \stackrel{?}{=} \\
& 3=3 \tag{1}\\
& \text { \#71 } \frac{3}{x+6}+\frac{7}{x+7}=\frac{5}{x^{2}+13 x+42} \\
& \text { dst Compute the LCD } \\
& \text { Distribute onkeft } x+6 \\
& \text { Cancel on R.s.ft } x+7 \\
& \begin{aligned}
&(x+6)(x+7)\left[\frac{3}{x+6}+\frac{7}{x+7}\right]=\left[\frac{5}{(x+6)(x+7)}\right](x+6)(x+7) x^{2}+13 x+42=(x+6)(x+7) \\
& L C D=(x+6)^{\square}(x+7)^{\square}
\end{aligned} \\
& (x+6)(x+7) \frac{3}{x+6}+(x+6)(x+7) \frac{7}{x+7}=5 \quad \text { Simplify } \\
& (x+7)-3+(x+6)-7=5 \\
& 3 x+21+7 x+42=5 \quad \text { Simplify } \\
& 10 x+63=5 \quad \text { Subtract } 63 \\
& 10 x+63-63=5-63 \quad \text { Simplify } \\
& \begin{array}{l}
10 x=-58 \quad \text { Divide by } \\
\frac{10 x}{19}=\frac{-58}{10} \quad \text { Simplify }
\end{array} \\
& x=\frac{-29}{5} \\
& \text { Check. } \\
& \frac{3}{-\frac{29}{5}+65}+\frac{7}{3 / 15}-\frac{59}{5}+\frac{5}{7 / 1} 5=\frac{\left(-\frac{29}{5}\right)^{2}+13\left(\frac{-29}{5}\right)+42}{5} \quad \leftrightarrow \frac{3}{1} \cdot \frac{5}{1}+\frac{7}{1} \cdot \frac{5}{6}=\frac{\frac{5}{1}}{\frac{3776}{25}} \\
& \frac{3 / 1}{-\frac{29+30}{5}}+\frac{7 / 1}{\frac{-29+35}{5}}=\frac{5}{\frac{841}{25}-\frac{3775+}{5} 5 \cdot \frac{42}{1} \cdot \frac{25}{25}} \quad \frac{15 \cdot 6}{1} 6+\frac{35}{6}=\frac{5}{1} \cdot \frac{25}{6} \\
& \begin{array}{l}
\left.\frac{3}{\frac{1}{5}}+\frac{\frac{7}{1}}{\frac{6}{5}}=\frac{5}{\frac{841-1885+1050}{25}} \quad \begin{array}{l}
\frac{90}{6}+\frac{35}{6}=\frac{125}{6} \\
\frac{125}{6}=\frac{125}{6}
\end{array}\right)
\end{array}
\end{align*}
$$

72. The graph of the one-to-one function f is shown below. Find the range of f^{-1}.

73. Solve.

$$
\frac{9}{x}+\frac{4}{x-5}=0
$$

Possibilities:

(a) 9
$\frac{\text { (b) } 45 / 13}{\text { (c) } 5 / 13}$ See work on Next Page
(d) $20 / 13$
(e) 1
74. Find a polynomial of degree 3 that has zeros $-3,3$, and 6 and in which the coefficient of x^{2} is -60 .

Polynomial:
$10(x+3)(x-3)(x-6)$ or $10 x^{3}-60 x^{2}-90 x+540$17
See work on Next page

75. Solve the inequality and graph the solution set on the real number line.

Possibilities: $\left.\right|^{\text {st }}$ Compute $h=\frac{-b}{2 a}=\frac{-(-5)}{2(3)}=\frac{5}{6}$
(a) $(-5 / 6,-83 / 12)$
(b) $(5 / 6,83 / 12)$ 2nd Compute $\begin{aligned} K & =f\left(\frac{-b}{2 a}\right)=f\left(\frac{5}{6}\right)=3\left(\frac{5}{6}\right)^{2}-5\left(\frac{5}{6}\right)+9 \\ & =3.25\end{aligned}$
(d) $(83 / 12,5 / 6)$
(e) $(-5 / 6,61 / 4)$

$$
=\frac{3}{1} \cdot \frac{25}{36,12}-\frac{25}{6}+\frac{9}{1}=\frac{25}{12}-\frac{25}{6} \cdot \frac{2}{2}+\frac{9}{1} \cdot \frac{12}{12}
$$

$$
=\frac{25}{12}-\frac{50}{12}+\frac{108}{12}=\frac{-25}{12}+\frac{108}{12}=\frac{83}{12}
$$

77. The graph of an exponential function, $f(x)=a^{x}$ is shown below. Find a.

78. Let $P(x)=x^{4}-17 x^{2}-x^{3}-3 x-60$. Find the real zeros of $\mathrm{P}(\mathrm{x}) . \quad X=-4 \sum_{1}^{1} x=5$| See Work on |
| :---: |
| $\begin{array}{l}\text { Next Page }\end{array}$ |
79. Let $P(x)=2 x^{3}+x^{2}-16 x-15$. Find the real zeros of $P(x) . x=-1, x=3 \sum_{1}^{1} x=\frac{-5}{2} \begin{gathered}\text { See work on } \\ \text { following } \\ \text { page }\end{gathered}$
$x=5$ is a root of
80. Does the graph of $P(x)=(x-5)^{900}(x+4)^{901}$ cross the x-axis at $x=5$? multiplicity quo which touches the x-axis @ $x=5$
$X=-4$ is a root of
81. Does the graph of $P(x)=(x-5)^{900}(x+4)^{901}$ cross the x-axis at $x=-4$? Multiplicity fol which
is odd so the graph
crosses the x-axis @ $x=-4$
82. Find the remainder of the divsion problem.

$$
\text { Remainder is zero } \frac{x^{4}-24 x^{3}+207 x^{2}-756 x+972}{x-9}
$$

See work on following page

Let $P(x)=x^{4}-24 x^{3}+207 x^{2}-756 x+972$. What is $P(9)$? What is the relationship between $P(9)$ and the remainder? They are the same
83. Find the quotient and the remainder of the division problem.

Quotient $=x^{3}-9 x^{2}+24 x-16 \quad \frac{x^{4}-18 x^{3}+105 x^{2}-232 x+144}{x-9}$
Remainder $=0$

$$
\begin{aligned}
& \text { See work on } \\
& \text { following page }
\end{aligned}
$$

85. Determine the end behavior of $\mathrm{P}(\mathrm{x})=5 x-3-x^{999}{ }^{5}$

$y \rightarrow-\infty$ as $x \rightarrow \infty$ Negative leading coefficient $+\quad y \rightarrow \infty$ as $x \rightarrow-00$

$$
P(x)=x^{4}-17 x^{2}-x^{3}-3 x-60
$$

-4 Dorks
By the rational $=\frac{\text { divisors of } \frac{60}{1}=\frac{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 10, \pm 12, \pm 15, \pm 20, \pm 30, \pm 60}{+1}}{\text { ivory }}$ Root Theorem = divisors of 1
the possible rational
roots are
$P(1)=1^{4}-17(1)^{2}-1^{3}-3(1)-60=-80$
$P(-1)=(-1)^{4}-17(-1)^{2}-(-1)^{3}-3(-1)-60=-72$
$P(2)=2^{4}-17(2)-2^{3}-3(2)-60=-126$
$P(-2)=(-2)^{4}-17(-2)-(-2)^{3}-3(-2)-60=-98$
$P(3)=3^{4}-17(3)^{2}-3^{3}-3 \cdot 3-60=-168$
$P(-3)=(-3)^{4}-17(-3)^{2}-(-3)^{3}-3(-3)-60=-96$
$P(4)=4^{4}-17(4)^{2}-4^{3}-3(4)-60=-152$
$P(-4)=(-4)^{4}-17(-4)^{2}-(-4)^{3}-3(-4)-60=0$
$P(5)=5^{4}-17(5)^{2}-5^{3}-3(5)-60=0 \sigma$
$P(-5)=(-5)^{4}-17(-5)^{2}-(-5)^{3}-3(-5)-60=280$
$P(6)=6^{4}-17(6)^{2}-6^{3}-3(6)-60=390$
$P(-6)=(-6)^{4}-17(-6)^{2}-(-6)^{3}-3(-6)-60=858$
$P(10)=10^{4}-17(10)^{2}-10^{3}-3(10)-60=7210$
$P(-10)=(-10)^{4}-17(-10)^{2}-(-10)^{3}-3(-10)-60=9270$
$P(12)=(12)^{4}-17(12)^{2}-12^{3}-3(12)-60=16464$
$P(-12)=(-12)^{4}-17(-12)^{2}-(-12)^{3}-3(-12)-60=19992 \quad$ Keep checking ()
$P(15)=15^{4}-17(15)^{2}-15^{3}-3(15)-60=4332017$
$P(-15)=(-15)^{4}-17(-15)^{2}-(-15)^{3}-3(-15)-60=50160$
$P(20)=20^{4}-17(20)^{2}-20^{3}-3(20)-60=145080$
$P(-20)=(-20)^{4}-17(-20)^{2}-(-20)^{3}-3(-20)-60=16 / 200$
$P(30)=30^{4}-17(30)^{2}-30^{3}-3(30)-60=767550$
$P(-30)=(-30)^{4}-17(-30)^{2}-(-30)^{3}-3(-30)-60=821730$
$P(60)=60^{4}-17(60)^{2}-60^{3}-3(60)-60=12682560$
$P(-60)=(-60)^{4}-17(-60)^{2}-(-60)^{3}-3(-60)-60=13114920$
\#79 $P(x)=2 x^{3}+x^{2}-16 x-15$
By the rational $=\frac{\text { divisors of } \frac{15}{2}= \pm \pm \pm 3, \pm 5, \pm 15}{ \pm 1, \pm 2}= \pm 1, \pm 3, \pm 5, \pm 15$, Root Theorem $=$ divisors of $2 \pm 1, \pm 2= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$ the possible rational roots are
$P(1)=2(1)^{3}+(1)^{2}-16(1)-15=-28$
$P(-1)=2(-1)^{3}+(-1)^{2}-16(-1)-15=0 ब$
$P(3)=2(3)^{3}+(3)^{2}-16(3)-15=0$
$P(-3)=2(-3)^{3}+(-3)^{2}-16(-3)-15=-12$
$P(5)=2(5)^{3}+(5)^{2}-16(5)-15=180$
$P(-5)=2(-5)^{3}+(-5)^{2}-16(-5)-15=-160$
$P\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-16\left(\frac{1}{2}\right)-15=-22.5$
$P\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{3}+\left(-\frac{1}{2}\right)^{2}-16\left(-\frac{1}{2}\right)-15=-7$
$P\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}+\left(\frac{3}{2}\right)^{2}-16\left(\frac{3}{2}\right)-15=-30$
$P\left(\frac{-3}{2}\right)=2\left(\frac{-3}{2}\right)^{3}+\left(\frac{-3}{2}\right)^{2}-16\left(\frac{-3}{2}\right)-15=4.5$
$P\left(\frac{5}{2}\right)=2\left(\frac{5}{2}\right)^{3}+\left(\frac{5}{2}\right)^{2}-16\left(\frac{5}{2}\right)-15=-17.5$
$P\left(-\frac{5}{2}\right)=2\left(\frac{-5}{2}\right)^{3}+\left(\frac{-5}{2}\right)^{2}-16\left(-\frac{5}{2}\right)-15=0$
\#82 $x-9 \left\lvert\, \frac{x^{3}-15 x^{2}+72 x-108 x}{x^{4}-24 x^{3}+207 x^{2}-756 x+972}\right.$

$$
\frac{-x^{4}+9 x^{3}}{-15 x^{3}+207 x^{2}-756 x+972}
$$

$$
\frac{+15 x^{3}-135 x^{2}}{72 x^{2}-756 x+972}
$$

$$
-72 x^{2}+648 x
$$

$$
-108 x+972
$$

$$
+108 x-972
$$

O Remainder

$$
\begin{aligned}
P(9) & =9^{4}-24(9)^{3}+207(9)^{2}-756(9)+972 \\
& =6561-24(729)+207(81)-6804+972 \\
& =6561-17496+16767-6804+972 \\
& =-10935+16767-6804+972 \\
& =5832-6804+972 \\
& =-972+972 \\
& =0
\end{aligned}
$$

$$
\text { |\#83| } \begin{array}{r}
\frac{x^{3}-9 x^{2}+24 x-16}{} \begin{array}{r}
\frac{x^{4}-18 x^{3}+105 x^{2}-232 x+144}{} \\
\frac{+9 x^{3}+105 x^{2}-232 x+144}{} \\
\frac{-24 x^{2}}{24 x^{2}-232 x+144}
\end{array} \\
\begin{array}{l}
\frac{+16 x+144}{}
\end{array}
\end{array}
$$

86. Let $P(x)=4 x^{3}-88 x^{2}+364 x-408$. Decide which of the statements below are true.
equivalent (I) $x=2$ is a zero of $f(x)$. Note $P(2)=4(2)^{3}-88(2)^{2}+364(2)-408$
(III) $x=-2$ is a zero of $f(x) . \quad=4.8-88 \cdot 4+728-408$
(vIII) $x+2$ is a factor of $f(x)$. $=32-352+728-408$
(IV) $x-2$ is a factor of $f(x)$.
$=-320+728-408$
$=408-408$
equivalent (V) The graph of $y=P(x)$ has an x-intercept at $(2,0)$. $50 I$, IV \bar{V} are all true
(VI) The graph of $y=P(x)$ has an x-intercept at $(-2,0)$.

Possibilities: Note: $P(-2)=4(-2)^{3}-88(-2)^{2}+364(-2)-408$

$$
\begin{aligned}
& =4-(-8)-88-4-728-408 \\
& \text { rue. (V) false. (VI) true }
\end{aligned}
$$

(a) (I) false; (II) false; (III) false; (IV) true; (V) false; (VI) true
(b) (I) true; (II) false; (III) true; (IV) false; (V) true; (VI) false
(e) (I) true; (II) false; (III) false; (IV) false; (V) false; (VI) false

$$
=-32-352-728-408
$$

$$
=-384-728-408
$$

$$
=-1112-408
$$

(d) (I) true; (II) true; (III) true; (IV) true; (V) true; (VI) true
(e) (I) true; (II) false; (III) false; (IV) true; (V) true; (VI) false

$$
=-1520
$$

$$
\text { So II, III } \sum_{1}^{1} \overline{\text { VI }} \text { are all false }
$$

87. Which of the following statements are true?
$\left.\begin{array}{c}\text { Equivalent } \\ \text { So either } \\ \text { all } \\ \text { (I) If } P(x)\end{array}\right)=3 x^{3}+x+15 x^{2}+5$, then $P(5)=0$.
so either
(II) $(5,0)$ is an x-intercept on the graph of $y=3 x^{3}+x+15 x^{2}+5$.
or all
false
(III) The remainder of the division problem $\frac{3 x^{3}+x+15 x^{2}+5}{x-5}$ is zero.
(IV) $(x-5)$ is a factor of $3 x^{3}+x+15 x^{2}+5$.

Possibilities:
(a) (I), (II), (III), and (IV) are all true.
(b) Only (III) and (VI) are true.
(c) Only (I) and (III) are true.
(d) Only (I) and (II) are true.
(e) None of the statements are true.

Note: $P(5)=3(5)^{3}+5+15(5)^{2}+5$
$=3 \cdot 125+5+15.25+5$
$=375+5+375+5$
$=380+375+5$
$=755+5$
$=760$
so all are false
88. Find the quotient and the remainder of the division problem.

$$
\begin{array}{lll}
\text { Quotient }=6 x^{2}+3 x+36 & \frac{6 x^{4}+3 x^{3}+2 x+1}{x^{2}-6} & \text { See work on } \\
\text { Remainder }=8 x+217 & & \text { Next Page }
\end{array}
$$

89. Find the quotient and the remainder of the division problem.

$$
\begin{aligned}
& \text { Quotient }=4 x^{2}+21 x+131 \quad \frac{4 x^{3}-3 x^{2}+5 x-6}{x-6} \\
& \text { Remainder }=780
\end{aligned}
$$

90. Find the remainder of the divsion problem.
See work on Next page

See work on Next page Remainder is 3900
and $P(-4)=3900$$\quad \frac{x^{4}-20 x^{3}+123 x^{2}-180 x-324}{x+4}$

Let $P(x)=x^{4}-20 x^{3}+123 x^{2}-180 x-324$. What is $P(-4)$? What is the relationship between $P(-4)$ and the remainder? They are the same
91. Solve the inequality.

$$
\frac{x+7}{x-5} \geq 0 \begin{array}{|c|c|c|c|}
\hline \begin{array}{c}
\text { Test } \\
\text { points }
\end{array} & x+7 & x-5 & \text { sign } \\
\hline-8 & - & - & + \\
\hline 0 & + & - & - \\
\hline 6 & + & + & + \\
\hline
\end{array}
$$

Possibilities:

(a) $(-\infty,-7] \cup(5, \infty)$ Critical Numbers
(b) $(-\infty,-7) \cup(5, \infty) \quad x+7=0 \quad$ or $x-5=0$
(c) $[-7,5]$
(d) $(-7,5)$
(e) $[-7,5)$

Answer: $(-\infty,-7] \cup(5, \infty)$
92. Solve the inequality.

$$
(x+7)(x-5)<0
$$

Possibilities: Critical numbers Same as above
(a) $(-\infty, \infty) \quad x=-7$ and $x=5$
(b) $(-\infty,-7) \cup(5, \infty)$
(c) $[-7,5]$
(d) $(-7,5)$
(e) $(-\infty,-7] \cup[5, \infty)$

Answer: $(-7,5)$

Test points	$x+7$	$x-5$	sign
-8	-	-	+
0	+	-	-
6	+	+	+
	0		

\#89

$$
\frac{4 x^{2}+21 x+131}{4 x^{3}-3 x^{2}+5 x-6}
$$

$$
\begin{aligned}
& \text { Quotient }=4 x^{2}+21 x+131 \\
& \frac{-4 x^{3}+24 x^{2}}{21 x^{2}+5 x-6} \\
& -21 x^{2}+126 x \\
& 131 x-6 \\
& -131 x+786 \\
& 780 \\
& \text { Remainder }=780 \\
& \underline{\# 90} \frac{x^{3}-24 x^{2}+219 x-1056}{x^{4}-20 x^{3}+123 x^{2}-180 x-324} \\
& \frac{-x^{4}-4 x^{3}}{-24 x^{3}+123 x^{2}-180 x-324} \\
& \frac{+24 x^{3}+96 x^{2}}{219 x^{2}-180 x-324} \\
& -219 x^{2}-876 x \\
& -1056 x-324 \\
& \begin{array}{r}
+1056 x+4224 \\
3900
\end{array} \\
& P(-4)=(-4)^{4}-20(-4)^{3}+123(-4)^{2}-180(-4)-324 \\
& =256+20 \cdot 64+123 \cdot 16+720-324 \\
& =256+1280+1968+720-324 \\
& =1536+1968+720-324 \\
& =3504+720-324 \\
& =4224-324 \\
& =3900
\end{aligned}
$$

93. In the picture below, the graph of $y=f(x)$ is the solid graph, and the graph of $y=g(x)$ is the dashed graph. Find a formula for $g(x)$.
Shift Right 3 units
algebraically is a
of x by $x-3$

Possibilities:

(a) $g(x)=f(x-3)$
(b) $g(x)=f(x)-3$
(c) $g(x)=f(x)+3$
(d) $g(x)=-3 f(x)$
(e) $g(x)=f(x+3)$

94. Find all of the zeros of $P(x)=x^{3}-4 x^{2}-12 x$.

$$
\text { Check } x=0 \quad \text { Check } x=6
$$

Possibilities:

$0^{3}-4(0)^{2}-12(0)=0$

$$
x^{3}-4 x^{2}-12 x=0 \quad \text { Factor }
$$

$$
\begin{equation*}
6^{3}-4(6)^{2}-12(6) \tag{0}
\end{equation*}
$$

$$
\text { So } x=0 \text { is a zerd }
$$

(a) $0,6,-2$

$$
=216-144-72
$$

(b) $0,6,2$
(c) $6,-2,8$
$x(x-6)(x+2)=0$
Zero Product Rule

So $x=0$ is a zero
Check $x=-2=72-72$

$$
(-2)^{3}-4(-2)^{2}-12(-2)
$$

$$
=0
$$

$$
\text { So } x=6 \text { is a zerd }
$$

(d) $0,-6,2$
(e) $6,-2,-6$

$$
\begin{aligned}
x=0 \text { or } x-6 & =0 \\
+6 & +6 \\
x & =6
\end{aligned}
$$

(d) $0,-6,2$

$$
\text { or } x+2=0
$$

- $2=-2$
$x=-2$

$$
=-24+24
$$

$$
=0
$$

$$
\text { so } x=-2 \text { is a zerd }
$$

95. Let $f(x)=3 x-2$ and $g(x)=x^{2}$. Find $g(f(x))$.

Possibilities:
(a) $9 x^{2}-12 x+4$

$$
g(f(x))=g(3 x-2)=(3 x-2)^{2}=(3 x-2)(3 x-2)
$$

(b) $3 x^{2}-2$
(c) $3 x^{3}-2 x^{2}$
(d) $9 x^{2}-4$
(e) $9 x^{2}+4$

```
\(\begin{array}{ll}\text { 96. Find all of the zeros of } P(x)=x^{3}+10 x^{2}+24 x . & \begin{array}{c}\text { Check } x=0 \\ O^{3}+10(0)^{2}+24(0)=0(3)\end{array} \\ \text { Possibilities: } \quad x^{3} & 0^{2}=0 x^{2}+4 x=0\end{array}\)
    Possibilities: \(\quad x^{3}+10 x^{2}+24 x=0 \quad\) Factor
\[
0^{3}+10(0)^{2}+24(0)=0
\]
\[
\text { so } x=0 \text { is a zero }
\]
\[
\text { (a) }-4,-6,4 \quad x\left(x^{2}+10 x+24\right)=0 \quad \text { Check } x=-4
\]
\[
\text { (b) }-4,-6,2 \quad x(x+4)(x+6)=0 \quad \text { Zero Product R }
\]
\[
(-4)^{3}+10(-4)^{2}+24(-4)=
\]
```

```
(d) \(0,-4,6\) \(\begin{array}{cc}-4-4 & -6-6 \\ x=-4 & x=-6\end{array}\)
\[
\text { Check } x=-6
\]
\[
\text { So } x=-4 \text { is a zero }
\]
(e) \(0,4,6\)
\[
\begin{aligned}
& (-6)^{3}+10(-6)^{2}+24(-6)=-216+360-144 \\
& =144-144=0
\end{aligned}
\]
So \(x=-6\) is a zero
```


99. Which of the following statements are true?

Equivalent so either all true
(I) If $P(x)=3 x^{3}+x-21 x^{2}-7$, then $P(7)=0$.
(II) $(7,0)$ is an x-intercept on the graph of $y=3 x^{3}+x-21 x^{2}-7$.
(III) The remainder of the division problem $\frac{3 x^{3}+x-21 x^{2}-7}{x-7}$ is zero.
(IV) $(x-7)$ is a factor of $3 x^{3}+x-21 x^{2}-7$.

Possibilities:

$$
P(7)=3(7)^{3}+7-21(7)^{2}-7
$$

(a) (I), (II), (III), and (IV) are all true.
(b) Only (I) and (II) are true.

$$
=3.343+7-21.49-7
$$

(c) Only (III) and (VI) are true.
$=1029+7-1029-7$
(d) Only (I) and (III) are true.
$=1036-1029-7$
$=7-7$
(e) None of the statements are true.
100. In the graph below, the solid graph is the graph of $y=f(x)$ and the dashed graph is the graph of $y=g(x)$. Which of the following statements are true?

True
(I) $f(\overline{0)} g(0)$

False
(II) $f(1)=g(1)$

False
(III) $f(2)>g(2)$

Possibilities:

(a) (I), (II), and (III) are all true.
(b) Only (II) is true.
(c) Only (I) and (III) are true.
(d) None of the statements are true.
(e) Only (I) is true.
101. Let $f(x)=-5 x^{9}+800 x^{4}-6 x+1$. Determine the end behavior of $y=f(x)$.

Highest exponent is odd
Leading coefficient is Negative
Possibilities:

(a) $y \rightarrow-\infty$ as $x \rightarrow \infty$ and $y \rightarrow-\infty$ as $x \rightarrow-\infty$
(b) $y \rightarrow \infty$ as $x \rightarrow \infty$ and $y \rightarrow \infty$ as $x \rightarrow-\infty$
(c) $y \rightarrow \infty$ as $x \rightarrow \infty$ and $y \rightarrow \infty$ as $x \rightarrow-\infty$
(d) $y \rightarrow-\infty$ as $x \rightarrow \infty$ and $y \rightarrow \infty$ as $x \rightarrow-\infty$
(e) None of the above.
102. Find a formula for the parabola with vertex $(4,-4)$ and that passes through the point $(5,-2)$.

$$
y=2(x-4)^{2}-4 \text { See work on Next page }
$$

103. If the GGMC corporation produces x kilograms of gadgets, then their revenue, in dollars, is given by $R(x)=100+700 x-.2 x^{2}$. What is the maximum revenue and how many kilograms of gadgets should be manufactures to obtain this maximum?
$\begin{array}{ll}\text { Maximum Revenue: } \$ 612,600 & \text { See work on } \\ \text { Kilograms of Gadgets: } 1750 & \text { Next page }\end{array}$
104. Let $P(x)=x^{3}-3 x-2 x^{2}+6$. Find the real zeros of $\mathrm{P}(\mathrm{x})$.

See work on following pages

$$
x=2, \pm \sqrt{3}
$$

105. Let $P(x)=7 x^{15}-2 x^{7}+3 x^{2}+8$. List all possible rational zeros of $P(x)$ given by the Rational Zeros Theorem (but do not check to see which are actually zeros).
$\begin{array}{ll}\text { Possibilities: } & \text { Divisors of } 8 \\ \text { (a) } \pm 1, \pm 8, \pm 8 / 7 & \frac{ \pm 1, \pm 2, \pm 4, \pm 8}{ \pm 1, \pm i s o r s ~ o f ~} 7\end{array}= \pm 1, \pm 2, \pm 4, \pm 8$
(b) $\pm 1, \pm 2, \pm 4, \pm 8, \pm 7, \pm 7 / 2, \pm 7 / 4, \pm 7 / 8$
$\pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{4}{7}, \pm \frac{8}{7}$
(c) $\pm 1, \pm 8, \pm 7 / 8$
(d) $\pm 1, \pm 1 / 2, \pm 1 / 4, \pm 1 / 8, \pm 7, \pm 7 / 2, \pm 7 / 4, \pm 7 / 8$
(e) $\pm 1, \pm 2, \pm 4, \pm 8, \pm 1 / 7, \pm 2 / 7, \pm 4 / 7, \pm 8 / 7$
106. Let $f(x)=3 x^{2}+2 x+1$. Find $\frac{f(x+h)-f(x)}{h}=6 x+3 h+2 \quad \begin{gathered}\text { See work on following } \\ \text { pages }\end{gathered}$
107. Find an equation for the line that is perpendicular to $y=\frac{5}{6} x+4$ and passes through the point
$(4,7)$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=\frac{-6}{5}(x-4)
\end{aligned}
$$ $\stackrel{-}{9}$

$$
\text { Slope } m=\frac{5}{6} \quad \perp m=\frac{-6}{5}
$$

108. Solve the inequality.

(a) $(1,14) \quad \begin{aligned} x-1=0 \\ +1+1\end{aligned}$ or $(x-14)^{2}=0<-$ Squire Root both sides

(c) $(-1,14)$

Don't indude because

$$
+14 \quad+14
$$

(d) $(-\infty, 1) \cup(1, \infty)$
(e) $(1,14) \cup(14, \infty)$

$$
\text { Answer: }(1,14) \cup(14, \infty)
$$

\#104 continued

$$
\begin{aligned}
& \begin{aligned}
& x^{2}-3 \\
& x - 2 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - 3 x + 6 } \\
&-x^{3}+2 x^{2}
\end{aligned} \quad \text { Note I ordered terms from highest } \\
& -3 x+6 \\
& +3 x-6 \\
& 0 \\
& \text { Consequently } P(x)=x^{3}-2 x^{2}-3 x+6=\left(x^{2}-3\right)(x-2)+0 \\
& =\left(x^{2}-3\right)(x-2) \\
& \text { so to find when } P(x)=0 \\
& \text { we weed }\left(x^{2}-3\right)(x-2)=0 \text { Zero Product Rule } \\
& \begin{array}{r}
x^{2}-3=0 \\
+3+3
\end{array} \quad \begin{array}{r}
x-2=0 \\
+2+2
\end{array} \\
& x^{2}=3 \quad x=2 \\
& x= \pm \sqrt{3} \\
& \text { Check } x=2 \quad \text { Check } x=\sqrt{3} \\
& P(2)=2^{3}-3(2)-2(2)^{2}+6 \quad P(\sqrt{3})=(\sqrt{3})^{3}-3 \sqrt{3}-2(\sqrt{3})^{2}+6 \\
& =8+6-8+6 \quad=3 \sqrt{3}-3 \sqrt{3}-2 \cdot 3+6 \\
& =0 \quad=3 \sqrt{3}-3 \sqrt{3}-6+6 \\
& \text { So } x=2 \text { is a zero }=0 \\
& \text { So } x=\sqrt{3} \text { is a zero } \\
& \text { Check } x=-\sqrt{3} \\
& P(-\sqrt{3})=(-\sqrt{3})^{3}-3(-\sqrt{3})-2(-\sqrt{3})^{2}+6 \\
& =-3 \sqrt{3}+3 \sqrt{3}-2 \cdot 3+6 \\
& =-3 \sqrt{3}+3 \sqrt{3}=6+6 \\
& =0 \\
& \text { So } x=-\sqrt{3} \text { is a zero }
\end{aligned}
$$

$$
\text { II106 1 }{ }^{\text {st }} \text { Compute } \begin{aligned}
& f(x+h)=3(x+h)^{2}+2(x+h)+1 \\
&=3(x+h)(x+h)+2 x+2 h+1 \\
&=3\left(x^{2}+x h+x h+h^{2}\right)+2 x+2 h+1 \\
&=3\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+1 \\
&=3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1 \\
& 2^{\text {nd }} \text { Compute } \frac{f(x+h)-f(x)}{h}=\frac{\left(3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1\right)-\left(3 x^{2}+2 x+1\right)}{h} \\
&=\frac{3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1-3 x^{2}-2 x-1}{h} \\
&=\frac{6 x h+3 h^{2}+2 h}{h}=\frac{k(6 x+3 h+2)}{K} \\
&=\frac{6 x+3 h+2}{K}
\end{aligned}
$$

109. Which of the following equations are linear equations?
(I) $y-2=x+3$
(II) $y=(\sqrt{2}) x$ Yes
(III) $y=\sqrt{2 x}$
$y=\sqrt{2} \sqrt{x}$
$y=\sqrt{2} x^{\frac{1}{2}}$
No

Possibilities:

(a) All of the equations are linear.
(b) None of the equations are linear.
(c) Only equation (I) is linear.
(d) Only equations (I) and (II) are linear
(e) Only equations (II) and (III) are linear
110. Which of the following are equations for the line through the points $P(-2,4)$ and $Q(5,6)$?

111. Let $f(x)=x^{2}+5 x$. Find the average rate of change of $f(x)$ from $x=a$ to $x=a+h$. Assume $h \neq 0$.

Possibilities:

(a) $\frac{h^{2}+5 h}{h}$ |St Compute $f(a+h)=(a+h)^{2}+5(a+h)=(a+h)(a+h)+5 a+5 h$
(b) $\frac{2 a h+h^{2}+10 a+5 h}{h}$ and $f(a)=a^{2}+5 a \quad a^{2}+a h+h a+h^{2}+5 a+5 h=a^{2}+2 a h+h^{2}+5 a+5 h$
(c) $-2 a-h-$
(d) $2 a+h+5$
(e) 1

$$
\begin{gathered}
=\frac{a^{2}+2 a h+h^{2}+5 a+5 h-a^{2}-5 a}{h}=\frac{2 a h+h^{2}+5 h}{h}=\frac{K(2 a+h+5)}{h} \\
26=2 a+h+5
\end{gathered}
$$

112. A train leaves Lexington for Indianapolis, 200 miles away, at 1:00 PM and averages 60 miles per hour. A second train travelling on an adjacent track leaves Indianapolis for Lexington at 3:30 PM and averages 40 miles per hour. At what time will the trains meet? (Round to the nearest minute.)
Possibilities: Let x be the Number of hours from 3:30 pm until the two trains meet
(a) $5: 00 \mathrm{PM}$
(b) $4: 00 \mathrm{PM}$
(c) $5: 30 \mathrm{PM}$
(d) $4: 30 \mathrm{PM}$
(e) 6:00PM

113. Approximate the solution to $8 x^{3}+24 x^{2}+24 x+8=9$.

Possibilities:
(a) $x \approx 0.0200$
(b) $x \approx 0.0139$
(c) $x \approx 0.0400$
(d) $x \approx-0.3920$
(e) $x \approx 9.0000$
114. A corner lot has dimensions 30 yards by 20 yards. The city plans to take a strip of uniform width along the two sides bordering the streets to widen these roads. How wide should the strip be if the remainder of the lot has an area of 459 square yards? Let " x " be the width of the

Possibilities:
(a) 30 yards
(b) 3 yards
(c) 459 yards
(d) 1 yard
(e) 10 yards

uniform strip removed from
the corner lot. Note $0 \leq x \leq 20$
$(20-x)(30-x)=459$
$x^{2}-20 x-30 x+x^{2}=459$
$\begin{aligned} 600-20 x-30 x+x^{2} & =459 \\ x^{2}-50 x+600 & =459\end{aligned}$
$x^{2}-50 x+600-459=459$
$x-47=0$

X= Impossible
because
$0 \leq x \leq 2 \delta$
$x-3=0$
+3
$x=3$
$\begin{aligned} x^{2}-50 x+141 & =0 \\ x^{2}-3 x-47 x+141 & =0\end{aligned}$

$x(x-3)-47(x-3)=0$
$(x-47)(x-3)=0$
115. Which of the following windows is an appropriate viewing window for $y=18 x-3 x^{2}$?

Possibilities:

(a) $-5 \leq x \leq 25,0 \leq y \leq 20$
(b) $-10 \leq x \leq 10,-50 \leq y \leq 50$
(c) $-30 \leq x \leq 15,-100 \leq y \leq 250$
(d) $-10 \leq x \leq 10,-10 \leq y \leq 10$
(e) None of the above windows gives a complete graph.

Short Answer Questions

Clearly write your final answer on the front page of the exam.
116. Let $P(x)=2 x^{7}-493 x^{5}+1050$. Find the y-intercept of the graph of $y=P(x)$.

$$
\begin{aligned}
& y \text {-intercept: } x=0 \\
& P(0)=2(0)^{7}-493(0)^{5}+1050=1050 \\
& \text { So the } y \text {-intercept is }(0,1050)
\end{aligned}
$$

117. A manufacturer finds that the revenue generated by selling x gadgets is given by the function $R(x)=340 x-.8 x^{2}$, where the revenue $R(x)$ is is measured in dollars. What is the maximum revenue?
$\frac{-b}{2 a}=\frac{-340}{2(-0.8)}=\frac{340}{1.6}=212.5$

$$
\begin{aligned}
R(212.5)=340(212.5)-0.8(212.5)^{2} & =72250-0.8(45156.25)=\$ 36,125 \\
& =72250-36125
\end{aligned}
$$

118. Find the remainder of the divsion problem.

$$
\begin{aligned}
\text { Let } P(x) & =x^{4}+7 x^{3}-9 x^{2}-115 x-100 \\
\text { then the remainder is the same } & \frac{x^{4}+7 x^{3}-9 x^{2}-115 x-100}{x-1} \\
\text { as } P(1) & =1^{4}+7(1)^{3}-9(1)^{2}-115(1)-100 \\
& =1+7-9-115-100 \\
& =8-9-115-100 \\
& =-1-115-100 \\
& =-116-100 \\
& =-216
\end{aligned}
$$

o positive so minimum
119. Let $f(x)=2 x^{2}-36 x+155$. Answer the following questions about the graph of $y=f(x)$.
(a) Does the graph of $y=f(x)$ have a minimum or a maximum at its vertex? min imum
(b) What is the vertex of $y=f(x)$?

$$
\begin{array}{rlrl}
\frac{-b}{2 a}=\frac{-(-36)}{2(2)}=\frac{36}{4}=9 & & \\
\begin{aligned}
f(9)=2(9)^{2}-36(9)+155 & =2.81-324+155 \\
& =162-324+155=-162+155=-7
\end{aligned}
\end{array}
$$

