Answer all of questions 1–6 and choose two of questions 7–9 to answer. Please indicate which of problems 7–9 is not to be graded by crossing through its number on the table below. You may use a calculator. You may not use a calculator which has symbolic manipulation capabilities. All other electronic devices including pagers and cell phones should be in the off position for the duration of the exam. Please:

1. **clearly indicate your answer and the reasoning used to arrive at that answer**
 (unsupported answers may not receive credit).
2. **give exact answers, rather than decimal approximations to the answer**

Each question is followed by space to write your answer. Please write your solutions neatly in the space below the question. You are not expected to write your solution next to the statement of the question.

Name: ________________________________

High school: ________________________________

Teacher: ________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Free</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 100
(1) Find the following limits. Justify your steps in finding each limit.
(a) \(\lim_{t \to 0} \arctan(e^t) \)

(b) \(\lim_{t \to 0} \frac{t^2}{1 - \cos(t)} \)

(c) \(\lim_{x \to \infty} x^{-1/2} \ln x \)
Given the function f defined for all x by

$$f(x) = \begin{cases}
3x & \text{for } x \leq 1 \\
Ax^3 + B & \text{for } 1 < x \leq 2 \\
10 & \text{for } x > 2.
\end{cases}$$

(a) Find A, B so that f is continuous for all x.

(b) Determine all points x at which f is not differentiable where A, B are the numbers you found in (a). Indicate your reasoning.

(a) $A = $ \hspace{1cm} $B = $

(b) Point(points) where f is not differentiable ________________________________
(3) Find the following derivatives. **Show your work!**

(a) \(g'(x) \) when \(g(x) = x^2 \sec(2x) \).

(b) \(\frac{dV}{dt} \) at \(t = \pi/2 \) when \(V(x) = x^3 + 2x \) and \(x = \cos t \).

(c) \(f^{(3)}(x) \) when \(f(x) = \frac{1}{1-x} \).

(a) \(g'(x) = \) ________________________________

(b) \(\frac{dV}{dt} \) at \(t = \pi/2 \)____________________

(c) \(f^{(3)}(x) = \) ________________________________
(4) A particle moves along the x-axis. The velocity of a particle at time t is given by $v(t) = 8t^3 + 2t + 1$ meters/second.

(a) Find the acceleration, $a(t)$, of the particle at time t.

(b) If the particle starts at the origin, find its position, $s(t)$, at time t.

(a) $a(t) =$ \underline{ } meters/ (second)2

(b) $s(t) =$ \underline{ } meters
(5) Given \(f(x) = x^2 \ln x, \ x \in (0, 1] \).

(a) Find the critical points of \(f \) in \((0,1)\).

(b) Determine whether \(f \) has a local maximum or minimum at each critical point. Justify your answer by showing the first or second derivative test is satisfied at each critical point.

(c) Does \(f \) have an absolute minimum on \((0,1)\)? Again, indicate your reasoning.

(a) critical point(points) at \(x = \) _________________

(b) local max at \(x = \) _________________ local min at \(x = \) _________________.
(6) Find the following integrals. You must show your work to receive credit.

(a) \(\int_0^1 t e^{t^2} \, dt \)

(b) \(\int \frac{1}{\sqrt{1 - 4x^2}} \, dx \)

(c) \(\int \frac{x}{(x^2 + 3)^2} \, dx \)
Work two of the following three problems. Indicate the problem that is not to be graded by crossing through its number on the front of the exam.

(7) (a) Given f continuous on $[a, b]$. State both versions of the fundamental theorem of calculus.

(b) Illustrate your answer in (a) by finding the derivative of $F(x) = \int_1^x \sin(e^t) \, dt$ at $x = 1$.

(c) Use the fundamental theorem of calculus and your knowledge of the definite integral to find $\lim_{n \to \infty} \left[(4/n) \sum_{i=1}^{n} (1 + i/n)^3 \right]$.
(8) Given a right triangle with one leg on the positive x axis and one leg on the positive y axis. Suppose also the hypotenuse contains (2,3).

(a) Among all such right triangles find the triangle with minimum area.

(b) What is the minimum area?

(a) Leg on x axis = ________________ Leg on y axis = ________________

(b) Area = ________________
Initially a 30 foot ladder leans against a vertical wall. The top of the ladder is 25 feet above the floor. At time \(t = 0 \) the top of the ladder begins sliding down the wall at a rate of 2 feet per second.

(a) How fast is the bottom (or base) of the ladder sliding along the floor 5 seconds later.

(b) Let \(\theta = \theta(t) \) be the angle that the ladder makes with the floor at time \(t \) seconds. Find the rate at which \(\theta \) is changing with respect to time when \(t = 5 \).

(a) \underline{\text{ feet/second}}

(b) \underline{\text{ radians/second}}