Exam 1

Form A Solutions

Multiple Choice Questions

1. Find the exact value of the expression

 $\log_5 100 + \log_5 25 - 2\log_5 2.$

A. 4
B. 5
C. 6
D. 7
E. 8

Solution: $\log_5 100 + \log_5 25 - 2\log_5 2 = \log_5(25 \times 4) + \log_5 5^2 - \log_5 2^2$ $= \log_5 25 + \log_5 4 + 2 - \log_5 4$ = 2 + 2 = 4

Exam 1 Form A

2. If f(x) = x + 5 and h(x) = 4x - 10, find a function g(x) so that g(f(x)) = h(x). A. g(x) = 4x + 30B. g(x) = 4xC. g(x) = x - 30D. g(x) = 4x - 30E. g(x) = x + 30

Solution: g(f(x)) = g(x+5) = 4x - 10. The simplest way to get 4x is to multiply by 4. If we just multiply by 4, i.e. if g(x) = 4x, then g(f(x)) = 4(x+5) = 4x + 20. We need 4x - 10 so we need to subtract 30 and take g(x) = 4x - 30. Then

$$g(f(x)) = g(x+5) = 4(x+5) - 30 = 4x - 10 = h(x).$$

3. Find the inverse function of $f(x) = \frac{x+1}{4x+1}$.

A.
$$f^{-1}(x) = -\frac{4x+1}{x-1}$$

B. $f^{-1}(x) = \frac{x}{4x-1}$
C. $f^{-1}(x) = \frac{4x+1}{x+1}$
D. $f^{-1}(x) = \frac{x+1}{\frac{1}{4}x+1}$
E. $f^{-1}(x) = -\frac{x-1}{4x-1}$

Solution: To find the inverse function set $y = \frac{x+1}{4x+1}$ and solve for *x*.

$$y = \frac{x+1}{4x+1}$$

y(4x+1) = x + 1
4xy - x = -y + 1
x(4y-1) = -y + 1
$$x = \frac{-y+1}{4y-1} = -\frac{y-1}{4y-1}$$

Thus, the inverse function is the function $f^{-1}(x) = -\frac{x-1}{4x-1}$.

4. Evaluate the limit

 $\lim_{x \to 1} \left(x + 5 \right)^3 \left(x^2 - 6 \right)$

A. -1090 **B.** -1080
C. -1070
D. -448
E. 320

Solution: To find this limit, simply use substitution: $\lim_{x \to 1} (x+5)^3 (x^2-6) = (1+5)^3 (1^2-6) = -1080$

- 5. Given that $\lim_{x \to a} f(x) = -3$, $\lim_{x \to a} g(x) = -4$, and $\lim_{x \to a} h(x) = 2$, find $\lim_{x \to a} \left((h(x))^2 - f(x)g(x) \right).$
 - A. 16
 B. 17
 C. 22
 D. -8
 E. 0

Solution: We use the basic laws of limits to compute this limit: $\lim_{x \to a} \left((h(x))^2 - f(x)g(x) \right) = \lim_{x \to a} (h(x))^2 - \lim_{x \to a} (f(x)g(x))$ $= \left(\lim_{x \to a} h(x) \right)^2 - \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ $= (2)^2 - (-3)(-4)$ = -8 6. If $1 \le f(x) \le x^2 + 2x + 2$, for all x, find $\lim_{x \to -1} f(x)$. A. -1/8B. -1/16C. 1 D. 8 E. Does not exist

Solution: This looks like a situation where we can use the Squeeze Theorem, but we need to know $\lim_{x\to -1} x^2 + 2x + 2$. By substitution, this limit is 1, so by the Squeeze Theorem

$$1 = \lim_{x \to -1} 1 \le \lim_{x \to -1} f(x) \le \lim_{x \to -1} x^2 + 2x + 2 = 1$$

Therefore, $\lim_{x \to -1} f(x) = 1$

7. Simplify the following: $sin(2 \arctan(x)) = sin(2 \tan^{-1}(x))$.

 $\sin(2\arctan(x)) = 2\sin(\arctan(x))\cos(\arctan(x))$ $= 2\left(\frac{x}{\sqrt{1+x^2}}\right)\left(\frac{1}{\sqrt{1+x^2}}\right)$ $= \frac{2x}{1+x^2}$

- 8. Find the equation of the line passing through the points (-1, 3) and (2, 9).
 - A. y = 2x + 1B. y = 2x + 4C. y = 2x + 5D. $y = \frac{1}{2}x + \frac{7}{2}$ E. $y = \frac{1}{2}x + \frac{5}{2}$

Solution: First, find the slope of the line connecting the two points:

$$m = \frac{9-3}{2-(-1)} = \frac{6}{3} = 2.$$

Now, use one of the points and the slope-point form of the equation of a line we get

$$y-9 = 2(x-2)$$
$$y = 2x - 4 + 9$$
$$y = 2x + 5$$

9. Find
$$\arcsin\left(\sin\left(\frac{7\pi}{6}\right)\right)$$
.
A. $\frac{7\pi}{6}$
B. $-\frac{\pi}{6}$
C. $\frac{\pi}{6}$
D. $\frac{5\pi}{6}$
E. $-\frac{5\pi}{6}$

Solution:
$$\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}$$
. The range of the arcsine function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so $\arcsin\left(\sin\left(\frac{7\pi}{6}\right)\right) = \arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

10. Solve the equation for *x*:

$$3^{x^2-3x} = 9^{x+7}$$

- A. x = -7 and x = 2B. x = 2 and x = 7C. x = -2 and x = 7D. $x = 2 \pm \sqrt{11}$
- E. There is no solution.

Solution:

$$3^{x^{2}-3x} = 9^{x+7} = 3^{2^{x+7}}$$
$$3^{x^{2}-3x} = 3^{2x+14}$$
$$\log_{3} 3^{x^{2}-3x} = \log_{3} 2^{2x+14}$$
$$x^{2}-3x = 2x + 14$$
$$x^{2}-5x - 14 = 0$$
$$(x+2)(x-7) = 0$$

Thus, the solutions are x = -2 and x = 7.

11. The population of a city at time *t* is $P(t) = 500e^{.075t}$. When will the population be four times larger than P(0)?

A.
$$\frac{\ln(0.075)}{4}$$

B. $\frac{\ln(4)}{0.075}$
C. $0.075 \ln(4)$
D. $500 \ln(4)$

E. None of the above

Solution: Substituting in t = 0, we find that P(0) = 500. Thus, we must find t so that P(t) = 2000.

$$500e^{.075t} = 2000$$

 $e^{.075t} = 4$
 $0.075t = \ln 4$
 $t = \frac{\ln 4}{0.075}$

- 12. A stone is tossed in the air from ground level. Its height at time *t* is $h(t) = 45t 4.9t^2$ meters. Compute the average velocity of the stone over the time interval [1.5, 3.5].
 - A. 41 m/s
 - B. 30.3 m/s
 - C. 20.5 m/s
 - D. 10.7 m/s
 - E. None of the above

Solution:

$$v_{average} = \frac{h(3.5) - h(1.5)}{3.5 - 1.5} m/s$$

= $\frac{97.475 - 56.475}{2} m/s$
= 20.5 m/s

Exam 1 Form A

Free Response Questions

13. Given that $\tan(\theta) = \frac{5}{12}$ and $0 \le \theta \le \frac{\pi}{2}$, find $\sin(\theta)$, $\cos(\theta)$, $\sec(\theta)$, $\sin(2\theta)$ and $\cos(2\theta)$.

Since the tangent is $\frac{5}{12}$, we have that the two legs are 5 units and 12 units. The hypotenuse is then $\sqrt{5^2 + 12^2} = \sqrt{169} = 13$. Then we can compute the other ratios.

$$\sin(\theta) = \frac{5}{13}$$

$$\cos(\theta) = \frac{12}{13}$$

$$\sec(\theta) = \frac{1}{\cos(\theta)} = \frac{13}{12}$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta) = \frac{120}{169}$$

$$\cos(2\theta) = \cos^{2}(\theta) - \sin^{2}(\theta) = \frac{144}{169} - \frac{25}{169} = \frac{119}{169}$$

- 14. The graph of f(x) is shown above. Find the following limits if they exist.
 - (a) $\lim_{x \to 6^{-}} f(x)$ Solution: $\lim_{x \to 6^{-}} f(x) = 4.$ (b) $\lim_{x \to 6^{-}} f(x)$
 - (b) $\lim_{x \to 6^+} f(x)$

Solution:

Solution:

Solution:

 $\lim_{x \to 6^+} f(x) = 2$

(c) $\lim_{x\to 6} f(x)$

 $\lim_{x \to 6} f(x) \text{ does not exist.}$

(d) $\lim_{x \to 3} f(x)$

 $\lim_{x \to 3} f(x) = 3$

(e) $\lim_{x \to 5} f(x)$

Solution: $\lim_{x \to 5} f(x) = 1$

15. Find the limits or state that the limit does not exist. In each case, justify your answer. (Students who guess the answer based on a few values of the function will not receive full credit.)

(a)
$$\lim_{x \to 2} \frac{x^3 - 4x}{x - 2}$$

Solution:
$$\lim_{x \to 2} \frac{x^3 - 4x}{x - 2} = \lim_{x \to 2} \frac{x(x + 2)(x - 2)}{x - 2}$$
$$= \lim_{x \to 2} \frac{x(x + 2)}{1}$$
$$= 8$$

(b)
$$\lim_{x \to 3} 3x - 4 + \frac{x^2}{x - 2}$$

Solution:
 $\lim_{x \to 3} 3x - 4 + \frac{x^2}{x - 2} = 3(3) - 4 + \frac{3^2}{3 - 1} = 14$

(c)
$$\lim_{x \to 2^+} f(x)$$
 if $f(x) = \begin{cases} x^2 - 2x + 2 & \text{if } x \le 2 \\ -4x + 12 & \text{if } x > 2 \end{cases}$

Solution: Since we are taking the limit from the right, we need to look at the branch of the function for x > 2. So we have

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (-4x + 12) = -4(2) + 12 = 4$$

- 16. Assume that the position of an object after *t* seconds is given by $f(t) = 10t^2 + 3t$ meters.
 - (a) Write an expression for the average velocity on the interval [2, 2 + h]. Include units!

Solution:

$$v_{avg} = \frac{f(2+h) - f(2)}{2+h-2} m/s = \frac{10(2+h)^2 + 3(2+h) - 46}{h} m/s$$

$$= \frac{40h + 10h^2 + 3h}{h} m/s = 43 + 10h m/s$$

(b) Compute the average velocity over the time intervals [1.999, 2] and [2, 2.001] to estimate the instantaneous velocity. Include units!

Solution: We plug in h = -0.001 and h = +0.001 into the formula we found in (a).

 $v_{avg}[1.999, 2] = 43 + 10(-0.001) \ m/s = 42.99 \ m/s$ $v_{avg}[2, 2.001] = 43 + 10(0.001) \ m/s = 43.01 \ m/s$

(c) Take the limit as h approaches 0 of the expression you found in part (a) to find the instantaneous velocity of the object at time t = 2 seconds. Include units!

Solution: $v_{instantaneous} = \lim_{h \to 0} (43 + 10h) m/s = 43 m/s$