Exam 1
Form A Solutions
Multiple Choice Questions

1. Find the exact value of the expression

$$
\log _{5} 100+\log _{5} 25-2 \log _{5} 2
$$

A. 4
B. 5
C. 6
D. 7
E. 8

Solution:

$$
\begin{aligned}
\log _{5} 100+\log _{5} 25-2 \log _{5} 2 & =\log _{5}(25 \times 4)+\log _{5} 5^{2}-\log _{5} 2^{2} \\
& =\log _{5} 25+\log _{5} 4+2-\log _{5} 4 \\
& =2+2 \\
& =4
\end{aligned}
$$

2. If $f(x)=x+5$ and $h(x)=4 x-10$, find a function $g(x)$ so that $g(f(x))=h(x)$.
A. $g(x)=4 x+30$
B. $g(x)=4 x$
C. $g(x)=x-30$
D. $g(x)=4 x-30$
E. $g(x)=x+30$

Solution: $g(f(x))=g(x+5)=4 x-10$. The simplest way to get $4 x$ is to multiply by 4 . If we just multiply by 4 , i.e. if $g(x)=4 x$, then $g(f(x))=4(x+5)=4 x+20$. We need $4 x-10$ so we need to subtract 30 and take $g(x)=4 x-30$. Then

$$
g(f(x))=g(x+5)=4(x+5)-30=4 x-10=h(x) .
$$

3. Find the inverse function of $f(x)=\frac{x+1}{4 x+1}$.
A. $f^{-1}(x)=-\frac{4 x+1}{x-1}$
B. $f^{-1}(x)=\frac{x}{4 x-1}$
C. $f^{-1}(x)=\frac{4 x+1}{x+1}$
D. $f^{-1}(x)=\frac{x+1}{\frac{1}{4} x+1}$
E. $f^{-1}(x)=-\frac{x-1}{4 x-1}$

Solution: To find the inverse function set $y=\frac{x+1}{4 x+1}$ and solve for x.

$$
\begin{aligned}
y & =\frac{x+1}{4 x+1} \\
y(4 x+1) & =x+1 \\
4 x y-x & =-y+1 \\
x(4 y-1) & =-y+1 \\
x & =\frac{-y+1}{4 y-1}=-\frac{y-1}{4 y-1}
\end{aligned}
$$

Thus, the inverse function is the function $f^{-1}(x)=-\frac{x-1}{4 x-1}$.
4. Evaluate the limit

$$
\lim _{x \rightarrow 1}(x+5)^{3}\left(x^{2}-6\right)
$$

A. -1090
B. -1080
C. -1070
D. -448
E. 320

Solution: To find this limit, simply use substitution:

$$
\lim _{x \rightarrow 1}(x+5)^{3}\left(x^{2}-6\right)=(1+5)^{3}\left(1^{2}-6\right)=-1080
$$

5. Given that $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=-4$, and $\lim _{x \rightarrow a} h(x)=2$, find

$$
\lim _{x \rightarrow a}\left((h(x))^{2}-f(x) g(x)\right)
$$

A. 16
B. 17
C. 22
D. -8
E. 0

Solution: We use the basic laws of limits to compute this limit:

$$
\begin{aligned}
\lim _{x \rightarrow a}\left((h(x))^{2}-f(x) g(x)\right) & =\lim _{x \rightarrow a}(h(x))^{2}-\lim _{x \rightarrow a}(f(x) g(x)) \\
& =\left(\lim _{x \rightarrow a} h(x)\right)^{2}-\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x) \\
& =(2)^{2}-(-3)(-4) \\
& =-8
\end{aligned}
$$

6. If $1 \leq f(x) \leq x^{2}+2 x+2$, for all x, find $\lim _{x \rightarrow-1} f(x)$.
A. $-1 / 8$
B. $-1 / 16$
C. 1
D. 8
E. Does not exist

Solution: This looks like a situation where we can use the Squeeze Theorem, but we need to know $\lim _{x \rightarrow-1} x^{2}+2 x+2$. By substitution, this limit is 1 , so by the Squeeze Theorem

$$
1=\lim _{x \rightarrow-1} 1 \leq \lim _{x \rightarrow-1} f(x) \leq \lim _{x \rightarrow-1} x^{2}+2 x+2=1
$$

Therefore, $\lim _{x \rightarrow-1} f(x)=1$
7. Simplify the following: $\sin (2 \arctan (x))=\sin \left(2 \tan ^{-1}(x)\right)$.
A. $\frac{2 x}{1+x^{2}}$
B. $\frac{2 x}{\sqrt{1+x^{2}}}$
C. $\frac{x}{\sqrt{1+x^{2}}}$
D. $\frac{x}{1+x^{2}}$
E. $\frac{2}{1+x^{2}}$

Solution:

Since the tangent is $\frac{x}{1}$, we have that the two legs are x units and 1 unit. The hypotenuse is then $\sqrt{1+x^{2}}$.

$$
\begin{aligned}
\sin (2 \arctan (x)) & =2 \sin (\arctan (x)) \cos (\arctan (x)) \\
& =2\left(\frac{x}{\sqrt{1+x^{2}}}\right)\left(\frac{1}{\sqrt{1+x^{2}}}\right) \\
& =\frac{2 x}{1+x^{2}}
\end{aligned}
$$

8. Find the equation of the line passing through the points $(-1,3)$ and $(2,9)$.
A. $y=2 x+1$
B. $y=2 x+4$
C. $y=2 x+5$
D. $y=\frac{1}{2} x+\frac{7}{2}$
E. $y=\frac{1}{2} x+\frac{5}{2}$

Solution: First, find the slope of the line connecting the two points:

$$
m=\frac{9-3}{2-(-1)}=\frac{6}{3}=2
$$

Now, use one of the points and the slope-point form of the equation of a line we get

$$
\begin{aligned}
y-9 & =2(x-2) \\
y & =2 x-4+9 \\
y & =2 x+5
\end{aligned}
$$

9. Find $\arcsin \left(\sin \left(\frac{7 \pi}{6}\right)\right)$.
A. $\frac{7 \pi}{6}$
B. $-\frac{\pi}{6}$
C. $\frac{\pi}{6}$
D. $\frac{5 \pi}{6}$
E. $-\frac{5 \pi}{6}$

Solution: $\sin \left(\frac{7 \pi}{6}\right)=-\frac{1}{2}$. The range of the arcsine function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so

$$
\arcsin \left(\sin \left(\frac{7 \pi}{6}\right)\right)=\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

10. Solve the equation for x :

$$
3^{x^{2}-3 x}=9^{x+7}
$$

A. $x=-7$ and $x=2$
B. $x=2$ and $x=7$
C. $x=-2$ and $x=7$
D. $x=2 \pm \sqrt{11}$
E. There is no solution.

Solution:

$$
\begin{aligned}
3^{x^{2}-3 x} & =9^{x+7}=3^{2 x+7} \\
3^{x^{2}-3 x} & =3^{2 x+14} \\
\log _{3} 3^{x^{2}-3 x} & =\log _{3} 2^{2 x+14} \\
x^{2}-3 x & =2 x+14 \\
x^{2}-5 x-14 & =0 \\
(x+2)(x-7) & =0
\end{aligned}
$$

Thus, the solutions are $x=-2$ and $x=7$.
11. The population of a city at time t is $P(t)=500 e^{.075 t}$. When will the population be four times larger than $P(0)$?
A. $\frac{\ln (0.075)}{4}$
B. $\frac{\ln (4)}{0.075}$
C. $0.075 \ln (4)$
D. $500 \ln (4)$
E. None of the above

Solution: Substituting in $t=0$, we find that $P(0)=500$. Thus, we must find t so that $P(t)=2000$.

$$
\begin{aligned}
500 e^{.075 t} & =2000 \\
e^{.075 t} & =4 \\
0.075 t & =\ln 4 \\
t & =\frac{\ln 4}{0.075}
\end{aligned}
$$

12. A stone is tossed in the air from ground level. Its height at time t is $h(t)=45 t-4.9 t^{2}$ meters. Compute the average velocity of the stone over the time interval [1.5, 3.5].
A. $41 \mathrm{~m} / \mathrm{s}$
B. $30.3 \mathrm{~m} / \mathrm{s}$
C. $20.5 \mathrm{~m} / \mathrm{s}$
D. $10.7 \mathrm{~m} / \mathrm{s}$
E. None of the above

Solution:

$$
\begin{aligned}
v_{\text {average }} & =\frac{h(3.5)-h(1.5)}{3.5-1.5} \mathrm{~m} / \mathrm{s} \\
& =\frac{97.475-56.475}{2} \mathrm{~m} / \mathrm{s} \\
& =20.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Free Response Questions
13. Given that $\tan (\theta)=\frac{5}{12}$ and $0 \leq \theta \leq \frac{\pi}{2}$, find $\sin (\theta), \cos (\theta), \sec (\theta), \sin (2 \theta)$ and $\cos (2 \theta)$.

Solution:

Since the tangent is $\frac{5}{12}$, we have that the two legs are 5 units and 12 units. The hypotenuse is then $\sqrt{5^{2}+12^{2}}=\sqrt{169}=13$. Then we can compute the other ratios.

$$
\begin{aligned}
\sin (\theta) & =\frac{5}{13} \\
\cos (\theta) & =\frac{12}{13} \\
\sec (\theta) & =\frac{1}{\cos (\theta)}=\frac{13}{12} \\
\sin (2 \theta) & =2 \sin (\theta) \cos (\theta)=\frac{120}{169} \\
\cos (2 \theta) & =\cos ^{2}(\theta)-\sin ^{2}(\theta)=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}
\end{aligned}
$$

14. The graph of $f(x)$ is shown above. Find the following limits if they exist.
(a) $\lim _{x \rightarrow 6^{-}} f(x)$

Solution:

$$
\lim _{x \rightarrow 6^{-}} f(x)=4
$$

(b) $\lim _{x \rightarrow 6^{+}} f(x)$

Solution:

$$
\lim _{x \rightarrow 6^{+}} f(x)=2
$$

(c) $\lim _{x \rightarrow 6} f(x)$

Solution:

$$
\lim _{x \rightarrow 6} f(x) \text { does not exist. }
$$

(d) $\lim _{x \rightarrow 3} f(x)$

Solution:

$$
\lim _{x \rightarrow 3} f(x)=3
$$

(e) $\lim _{x \rightarrow 5} f(x)$

Solution:

$$
\lim _{x \rightarrow 5} f(x)=1
$$

15. Find the limits or state that the limit does not exist. In each case, justify your answer. (Students who guess the answer based on a few values of the function will not receive full credit.)
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x-2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x-2} & =\lim _{x \rightarrow 2} \frac{x(x+2)(x-2)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{x(x+2)}{1} \\
& =8
\end{aligned}
$$

(b) $\lim _{x \rightarrow 3} 3 x-4+\frac{x^{2}}{x-2}$

Solution:

$$
\lim _{x \rightarrow 3} 3 x-4+\frac{x^{2}}{x-2}=3(3)-4+\frac{3^{2}}{3-1}=14
$$

(c) $\lim _{x \rightarrow 2^{+}} f(x)$ if $f(x)= \begin{cases}x^{2}-2 x+2 & \text { if } x \leq 2 \\ -4 x+12 & \text { if } x>2\end{cases}$

Solution: Since we are taking the limit from the right, we need to look at the branch of the function for $x>2$. So we have

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(-4 x+12)=-4(2)+12=4
$$

16. Assume that the position of an object after t seconds is given by $f(t)=10 t^{2}+3 t$ meters.
(a) Write an expression for the average velocity on the interval $[2,2+h]$. Include units!

Solution:

$$
\begin{aligned}
v_{a v g} & =\frac{f(2+h)-f(2)}{2+h-2} m / \mathrm{s}=\frac{10(2+h)^{2}+3(2+h)-46}{h} \mathrm{~m} / \mathrm{s} \\
& =\frac{40 h+10 h^{2}+3 h}{h} \mathrm{~m} / \mathrm{s}=43+10 h \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Compute the average velocity over the time intervals [1.999,2] and $[2,2.001]$ to estimate the instantaneous velocity. Include units!

Solution: We plug in $h=-0.001$ and $h=+0.001$ into the formula we found in (a).

$$
\begin{aligned}
& v_{\text {avg }}[1.999,2]=43+10(-0.001) \mathrm{m} / \mathrm{s}=42.99 \mathrm{~m} / \mathrm{s} \\
& v_{\text {avg }}[2,2.001]=43+10(0.001) \mathrm{m} / \mathrm{s}=43.01 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) Take the limit as h approaches 0 of the expression you found in part (a) to find the instantaneous velocity of the object at time $t=2$ seconds. Include units!

Solution: $v_{\text {instantaneous }}=\lim _{h \rightarrow 0}(43+10 \mathrm{~h}) \mathrm{m} / \mathrm{s}=43 \mathrm{~m} / \mathrm{s}$

