Exam 1

Form A Solutions

Multiple Choice Questions

1. Find $\lim _{x \rightarrow-\infty} \frac{12 x^{5}+13 x^{4}-14 x}{12 x^{4}-31 x^{2}+12}$.
A. 1
B. 12
C. $-11 / 7$
D. ∞
E. $-\infty$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{12 x^{5}+13 x^{4}-14 x}{12 x^{4}-31 x^{2}+12} & =\lim _{x \rightarrow-\infty}\left(\frac{12 x^{5}+13 x^{4}-14 x}{12 x^{4}-31 x^{2}+12} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}}\right) \\
& =\lim _{x \rightarrow-\infty} \frac{12 x+13-\frac{14}{x^{3}}}{12-\frac{31}{x^{2}}+\frac{12}{x^{4}}} \\
& =-\infty
\end{aligned}
$$

2. Find $\lim _{x \rightarrow-\infty} \frac{x+|x|}{x+1}$.
A. 0
B. 1
C. 2
D. -2
E. $-\infty$

Solution: First note that for $x<0, x+|x|=0$. Then,

$$
\lim _{x \rightarrow-\infty} \frac{x+|x|}{x+1}=\lim _{x \rightarrow-\infty} \frac{0}{x+1}=0
$$

3. Find the inverse function of $f(x)=\frac{2 x+1}{3 x+2}$.
A. $\frac{3 x+2}{2 x+1}$
B. $\frac{\frac{1}{2} x+1}{\frac{1}{3} x+\frac{1}{2}}$
C. $\frac{2 x}{2-3 x}$
D. $\frac{2 x-1}{2-3 x}$
E. $\frac{2 x-1}{3 x-2}$

Solution: Start with $y=\frac{2 x+1}{3 x+2}$ and solve for x, then swap the x and y variables.

$$
\begin{aligned}
y & =\frac{2 x+1}{3 x+2} \\
y(3 x+2) & =2 x+1 \\
3 x y-2 x & =1-2 y \\
x(3 y-2) & =1-2 y \\
x & =\frac{1-2 y}{3 y-2}=\frac{2 y-1}{2-3 y}
\end{aligned}
$$

Now, swap x and y

$$
y=\frac{2 x-1}{2-3 x}
$$

4. Evaluate the limit

$$
\lim _{x \rightarrow 1}\left(x^{3}+4\right)^{2}\left(x^{2}+9\right)
$$

A. 25
B. 50
C. 250
D. 500
E. 2500

Solution:

$$
\lim _{x \rightarrow 1}\left(x^{3}+4\right)^{2}\left(x^{2}+9\right)=(1+4)^{2}(1+9)=250
$$

5. Given that $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=-4$, and $\lim _{x \rightarrow a} h(x)=2$, find

$$
\lim _{x \rightarrow a}\left((3 h(x))^{2}-2 f(x) g(x)\right)
$$

A. -12
B. 12
C. 36
D. 43
E. 60

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow a}\left((3 h(x))^{2}-2 f(x) g(x)\right) & =\left(\left(3 \lim _{x \rightarrow a} h(x)\right)^{2}-2 \lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)\right) \\
& =6^{2}-2(-3)(-4)=12
\end{aligned}
$$

6. If $2 x+2 \leq f(x) \leq x^{2}+2 x+2$, for all x, find $\lim _{x \rightarrow 0} f(x)$.
A. 2
B. 4
C. 5
D. 10
E. Does not exist

Solution: Since $2 x+2 \leq f(x) \leq x^{2}+2 x+2$ for all x, we then have that

$$
\lim _{x \rightarrow 0} 2 x+2 \leq \lim _{x \rightarrow 0} f(x) \leq \lim _{x \rightarrow 0} x^{2}+2 x+2
$$

The two outer limits go to 2 thus by the Squeeze Theorem $\lim _{x \rightarrow 0} f(x)=2$.
7. By the Intermediate Value Theorem the equation $x^{3}+5 x-10=0$ has a root in which interval?
A. $[-1,0]$
B. $[0,1]$
C. $[1,2]$
D. $[2,3]$
E. $[3,4]$

Solution: Let $f(x)=x^{3}+5 x-10$. We just need to check the endpoints of each interval to see where the function changes sign. Briefly, $f(1)=-4$ while $f(2)=$ 8 so by the Intermediate Value Theorem, $f(x)$ must be zero somewhere in the interval [1,2].
8. Find the equation of the line passing through the points $(-1,2)$ and $(3,10)$.
A. $y=2 x-2$
B. $y=2 x+4$
C. $y=2 x-10$
D. $y=\frac{1}{2} x-\frac{3}{2}$
E. $y=\frac{1}{2} x+\frac{5}{2}$

Solution: The slope is $m=\frac{10-2}{3-(-1)}=2$. Using the point-slope form of the equation of a line we find that $y-2=2(x+1)$ or $y=2 x+4$.
9. Find $\arcsin \left(\sin \left(\frac{7 \pi}{6}\right)\right)$.
A. $\frac{7 \pi}{6}$
B. $-\frac{\pi}{6}$
C. $\frac{\pi}{6}$
D. $\frac{5 \pi}{6}$
E. $-\frac{5 \pi}{6}$

Solution: $\sin \left(\frac{7 \pi}{6}\right)=-\frac{1}{2}$ and $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$.
10. Find the horizontal asymptote(s) for $f(x)=\frac{\sqrt{4 x^{2}+7}}{8 x+6}$.
A. $y=\frac{1}{4}$
B. $y=\frac{1}{2}$
C. $y=-\frac{1}{2}$ and $y=\frac{1}{2}$
D. $y=-\frac{1}{4}$ and $y=\frac{1}{4}$
E. The function has no horizontal asymptotes.

Solution:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+7}}{8 x+6}=\lim _{x \rightarrow \infty} \frac{\sqrt{4} x^{2}}{8 x}=\lim _{x \rightarrow \infty} \frac{2|x|}{8 x}=\frac{1}{4}
$$

Meanwhile,

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+7}}{8 x+6}=\lim _{x \rightarrow-\infty} \frac{\sqrt{4} x^{2}}{8 x}=\lim _{x \rightarrow-\infty} \frac{2|x|}{8 x}=\lim _{x \rightarrow-\infty} \frac{-2 x}{8 x}=-\frac{1}{4}
$$

Therefore, the two horizontal asymptotes for $f(x)$ are $y=\frac{1}{4}$ and $y=-\frac{1}{4}$.
11. Find $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}$
A. $-\frac{3}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
E. $\frac{3}{4}$

Solution:

$$
\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}=\lim _{x \rightarrow-1} \frac{(2 x+1)(x+1)}{(x-3)(x+1)}=\lim _{x \rightarrow-1} \frac{(2 x+1)}{(x-3)}=\frac{1}{4}
$$

12. A stone is tossed in the air from ground level. Its height at time t is $h(t)=45 t-4.9 t^{2}$ meters. Compute the average velocity of the stone over the time interval [1.5, 3.5].
A. $41 \mathrm{~m} / \mathrm{s}$
B. $30.3 \mathrm{~m} / \mathrm{s}$
C. $20.5 \mathrm{~m} / \mathrm{s}$
D. $10.7 \mathrm{~m} / \mathrm{s}$
E. None of the above

Solution:

$$
\text { Avg velocity }=\frac{h(3.5)-h(1.5)}{3.5-1.5}=\frac{97.475-56.475}{2}=20.5
$$

Free Response Questions

13. (a) What does it mean for a function $f(x)$ to be continuous at a point $x=a$? Use complete sentences.

Solution: The function $f(x)$ is continuous at $x=a$ if the following three conditions are met:

1. $f(a)$ exists,
2. $\lim _{x \rightarrow a} f(x)$ exists, and
3. $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) Consider the piecewise defined function

$$
f(x)= \begin{cases}5 & \text { if } 0 \leq x<1 \\ a x+3 & \text { if } 1 \leq x<2 \\ x^{2}-2 x+b & \text { if } 2 \leq x \leq 3\end{cases}
$$

where a and b are constants. Find the values of a and b for which $f(x)$ is continuous on $[0,3]$.

Solution: By its definition, it is continuous everywhere except possibly at $x=1$ and at $x=2$ where the branches of the function change. We need to assure that it is continuous at these two points. We need the limit at $x=1$ to exist so we need

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 5=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} a x+3
$$

This gives us at $a+3=5$ or $a=2$.
We need the limit at $x=2$ to exist also so we need

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} a x+3=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}-2 x+b
$$

This gives us that $2 a+3=2 \cdot 2+3=7=4-4+b$ or $b=7$.

14. The graph of $f(x)$ is shown above. Find the following limits if they exist.
(a) $\lim _{x \rightarrow-3^{+}} f(x)$

Solution:

$$
\lim _{x \rightarrow-3^{+}} f(x)=-2
$$

(b) $\lim _{x \rightarrow-2^{+}} f(x)$

Solution:

$$
\lim _{x \rightarrow-2^{+}} f(x)=3
$$

(c) $\lim _{x \rightarrow 2} f(x)$

Solution:

$$
\lim _{x \rightarrow 2} f(x)=3
$$

(d)

Solution:

$$
\lim _{x \rightarrow 0} f(x)=3
$$

(e) What are the x-values at which $f(x)$ is not continuous on $[-6,6]$.

Solution: $f(x)$ is not continuous at $x=-3$ (jump discontinuity), at $x=-2$ (infinite discontinuity), at $x=0$ because $f(0)$ is not defined, and at $x=2$ which is a removable discontinuity.
15. Find the limits or state that the limit does not exist. In each case, show your work.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Solution:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2} x+2=4
$$

(b) $\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}$

Solution:

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}=\lim _{x \rightarrow 1} \frac{x(x+1)(x-1)}{x-1}=\lim _{x \rightarrow 2} x(x+1)=2
$$

(c) $\lim _{x \rightarrow 5} 3 x-4+\frac{2 x+4}{x-3}$

Solution:

$$
\lim _{x \rightarrow 5} 3 x-4+\frac{2 x+4}{x-3}=3(5)-4+\frac{2(5)+4}{5-3}=18
$$

(d) $\lim _{x \rightarrow \frac{\pi}{2}} 3 \sin (2 x)-4 e^{2 \cos x}$

Solution:

$$
\lim _{x \rightarrow \frac{\pi}{2}} 3 \sin (2 x)-4 e^{2 \cos x}=3 \sin (\pi)-4 e^{2 \cos \frac{\pi}{2}}=3 \times 0-4 \times e^{0}=-4
$$

16. Find the limits or state that the limit does not exist. In each case, justify your answer.
(a) $\lim _{x \rightarrow+\infty} \frac{\left(2 x^{2}+1\right)^{2}}{(x-1)^{2}\left(x^{2}+x\right)}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\left(2 x^{2}+1\right)^{2}}{(x-1)^{2}\left(x^{2}+x\right)} & =\lim _{x \rightarrow+\infty} \frac{4 x^{4}+4 x^{2}+1}{x^{4}-x^{3}-x^{2}+x} \\
& =\lim _{x \rightarrow+\infty}\left(\frac{4 x^{4}+4 x^{2}+1}{x^{4}-x^{3}-x^{2}+x} \cdot \frac{\frac{1}{x^{4}}}{\frac{1}{x^{4}}}\right) \\
& =\lim _{x \rightarrow+\infty} \frac{4+\frac{4}{x^{2}}+\frac{1}{x^{4}}}{1-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x^{3}}} \\
& =4
\end{aligned}
$$

(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}} & =\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{6}}}{-x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{2|x|^{3}}{-x^{3}}=\lim _{x \rightarrow-\infty} \frac{2\left(-x^{3}\right)}{-x^{3}} \\
& =2
\end{aligned}
$$

(c) $\lim _{x \rightarrow+\infty} \frac{x-3 x^{2}+x^{4}}{x^{3}-x+2}$

Solution: $\lim _{x \rightarrow+\infty} \frac{x-3 x^{2}+x^{4}}{x^{3}-x+2}=+\infty$
(d) $\lim _{x \rightarrow+\infty} e^{-2 x} \cos x$

Solution: $\lim _{x \rightarrow+\infty} e^{-2 x} \cos x=0$

