Exam 1 Form A

Name:							Sec	ction a	and/(or IA	:			
Do	not re	move	e this	ansv	ver pag	ge — yoı	a will r	eturn	the	whole	e exar	n. Yo	u will l	be
allowed	d two	hour	s to	comp	lete thi	is test. 1	No boo	ks or	notes	s may	be ι	ised.	You ma	ay
use a g	raphir	ng cal	culat	or du	ring th	e exam, l	out NO	calcu	lator	with	a Cor	nputei	r Algeb	ra
System	(CAS) or a	QWI	ERTY	keyboa	ard is per	mitted.	Abso	lutel	y no c	ell ph	one us	se durir	ng
the exa	m is a	llowe	ed.											
The	exam	cons	ists o	f 14 n	nultiple	e choice o	questio	ns tha	t cou	nt 5 p	oints	each a	ınd 3 fr	ee
respons	se que	stion	s that	coun	t 10 poi	ints each	. Record	d you	r ansv	wers t	o the	multip	ole choi	ce
questio	ons on	this p	oage l	y fill	ing in t	he circle	corresp	ondi	ng to	the co	orrect	answe	er.	
Sho	w all v	work	to rec	ceive 1	full cre	dit on the	e free re	espon	se pro	blem	s.			
								•	•					
					Mult	iple Cho	ice Que	estions	5					
-		(P)			(F)		0	\bigcirc				(F)		
1	A	(B)		D	E		8	A	(<u>B</u>)		D	(\mathbf{E})		
2	\overline{A}	$\overline{\mathbf{B}}$	\bigcirc	\bigcirc	(E)		9	\overline{A}	(B)	$\overline{\mathbb{C}}$	\bigcirc	$\overline{\mathbf{E}}$		
_												<u> </u>		
3	(A)	$\overline{\mathbf{B}}$	\overline{C}	(D)	$\overline{\mathbf{E}}$		10	(A)	(B)	$\left(\begin{array}{c} \mathbf{C} \end{array} \right)$	(D)	(E)		
		_							_			_		
4	(A)	$\left(\mathbf{B}\right)$	(<u>C</u>)	(D)	E		11	(\mathbf{A})	$\left(\mathbf{B}\right)$	(C)	(D)	(\mathbf{E})		
5	(\mathbf{A})	(\mathbf{B})	(\mathbf{C})	(\mathbf{D})	(\mathbf{E})		12	(\mathbf{A})	$\left(\mathbf{B}\right)$	(\mathbf{C})	(\mathbf{D})	(\mathbf{E})		

SCORE

 $oxed{A}$ $oxed{B}$ $oxed{C}$ $oxed{D}$ $oxed{E}$

 \bigcirc \bigcirc \bigcirc

 \bigcirc A \bigcirc B \bigcirc C

Multiple				Total
Choice	17	18	19	Score
70	10	10	10	100

13

14

 \bigcirc

 \bigcirc \bigcirc \bigcirc

 \bigcirc B

 \bigcirc B

 \bigcirc

 \bigcirc

 \bigcirc

Trigonometric Identities

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$

Multiple Choice Questions

- 1. Find $\lim_{x\to 2} \sqrt{x+23} + \lim_{x\to 4} \frac{x^2-16}{x-4}$.
 - A. 15
 - B. 12
 - C. 14
 - D. 16
 - E. 13

2. If $\lim_{x\to 3} f(x) = 7$ and $\lim_{x\to 3} (f(x)g(x)) = 28$, then find

$$\lim_{x\to 3} \left(5f(x) + \sqrt{g(x)} + (g(x))^2\right).$$

- A. 54
- B. 53
- C. 56
- D. 55
- E. 52

3. Suppose that a function f is defined by

$$f(x) = \begin{cases} 3x - 2 & 0 < x < 4 \\ 18 & x = 4 \\ x^2 - 5x + 6 & x > 4 \end{cases}$$

Let $M = \lim_{x \to 4^{-}} f(x)$ and $N = \lim_{x \to 4^{+}} f(x)$. Find 3M + 5N.

- A. 12
- **B.** 40
- C. 56
- D. 144
- E. 18

- 4. The position function for a particle moving along a line is given by $s(t) = t^3 + 1$. Find the average velocity of the particle on the interval [2,5].
 - A. 38
 - B. 40
 - C. 37
 - D. 39
 - E. 36

5. Find all values of x which satisfy the given equation

$$\log_2(x) + \log_2(x - 3) = 2.$$

- A. x = -1
- **B.** x = 4
- C. x = 4 and x = -1
- D. x = 2
- E. The equation has no solutions.

6. Find all values of θ in the interval $[0,2\pi]$ for which

$$\sin(\theta) = \cos(\theta).$$

- A. $\theta = \frac{\pi}{4}$ and $\theta = \frac{5\pi}{4}$.
- B. $\theta = 0$, $\theta = \pi$, and $\theta = 2\pi$.
- C. $\theta = \frac{\pi}{4}$, $\theta = \frac{5\pi}{4}$ and $\theta = \frac{9\pi}{4}$.
- D. $\theta = \frac{\pi}{3}$ and $\theta = \frac{\pi}{6}$
- E. The equation has no solutions in the specified interval.

7. Consider the function defined by

$$f(x) = \begin{cases} c^2 x + c & \text{if } x < 1 \\ x^2 - 2x + 3 & \text{if } x \ge 1 \end{cases}.$$

For which value(s) of *c* is this function continuous?

- A. c = 1
- B. c = 3
- C. c = 2
- **D.** c = 1 and c = -2
- E. This function is not continuous for any value of c.

8. Evaluate the limit

$$\lim_{x \to \infty} \frac{\sqrt{9x^4 + 5x + 1}}{4x^2 + 3}$$

- **A.** $\frac{3}{4}$
- B. $\frac{\sqrt{15}}{7}$
- C. $\frac{9}{4}$
- D. ∞
- E. −∞

9. Find all of the vertical asymptote(s) of the function

$$g(x) = \frac{x^2 + x}{x^3 - x}$$

- A. x = 0
- B. x = 1 and x = 0
- C. x = 1
- D. x = 1, x = -1, and x = 0
- **E.** x = 1

- 10. If $-x^2 2x \le f(x) \le x^2 + 2x + 2$, for all x, find $\lim_{x \to -1} f(x)$.
 - A. -1/8
 - B. 1
 - C. -1/16
 - D. 8
 - E. Does not exist

- 11. If a function f(x) is not defined at x = a, which of the following is a true statement?
 - A. $\lim_{x \to a} f(x)$ cannot exist.
 - B. $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
 - C. $\lim_{x \to a} f(x)$ must approach infinity.
 - **D.** $\lim_{x \to a} f(x)$ might be equal to zero.
 - E. None of the above

- 12. Find $\arcsin(\cos(\frac{3\pi}{4})) = \sin^{-1}(\cos(\frac{3\pi}{4}))$.
 - A. $\frac{\pi}{4}$
 - B. $-\frac{3\pi}{4}$
 - **C.** $-\frac{\pi}{4}$
 - D. $\frac{3\pi}{4}$
 - E. None of the above

13. Suppose that f is a continuous function on the interval [0,5] and we know that

$$f(0) = 1$$
, $f(1) = -1$, $f(2) = 1$, $f(3) = -1$, $f(4) = 1$, and $f(5) = -1$.

Which of the following statements are true for any such *f*?

- A. The equation f(x) = 1 has exactly three solutions in the interval [0,5].
- B. There are at most five solutions of the equation f(x) = 0 in the interval [0,5].
- C. There are exactly five solutions of the equation f(x) = 0 in the interval [0,5].
- **D.** There are at least five solutions of the equation f(x) = 0 in the interval [0,5].
- E. The equation f(x) = -1 has at most three solutions in the interval [0,5].

14. If f(2) = 4 and the derivative of f at x = 2 is 7, find the equation of the tangent line to the curve y = f(x) at x = 2.

A.
$$y = 4 - 7(x - 2)$$

B.
$$y = 7 + 4(x - 2)$$

C.
$$y = 4 + 7(x - 2)$$

D.
$$y = 2 - 7(x - 4)$$

E.
$$y = 2 + 7(x - 4)$$

Free Response Questions Show all of your work

- 15. For each limit below, evaluate the limit or state that the limit does not exist. Guessing the limit based on a table of values will not receive credit. Show all of your work. An answer with no work will receive no credit.
 - (a) $\lim_{x \to 0} \frac{\sin^2(x)}{1 \cos(x)}$

Solution:

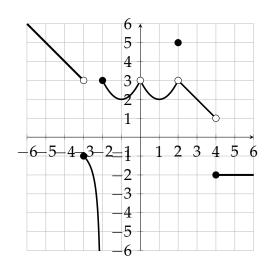
$$\lim_{x \to 0} \frac{\sin^2(x)}{1 - \cos(x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{1 - \cos x}$$

$$= \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{1 - \cos x}$$

$$= \lim_{x \to 0} (1 + \cos x)$$

$$= 2$$

(b) $\lim_{x \to 1} \frac{(2x+1)(2x-2)}{(x-8)(x-1)}$


Solution:

$$\lim_{x \to 1} \frac{(2x+1)(2x-2)}{(x-8)(x-1)} = \lim_{x \to 1} \frac{(2x+1)(2)(x-1)}{(x-8)(x-1)}$$
$$= \lim_{x \to 1} \frac{2(2x+1)}{x-8}$$
$$= -\frac{6}{7}$$

(c) $\lim_{x\to 2^+} \frac{1}{x^2+x-6}$

Solution: The denominator goes to 0 at x = 2. Coming in from values greater than 2, the function tends to $+\infty$, or you could say that the limit does not exist as a real number.

$$\lim_{x \to 2^+} \frac{1}{x^2 + x - 6} = +\infty$$

- 16. The graph of f(x) is shown above. Find the following limits if they exist or state that they do not exist.
 - (a) $\lim_{x \to -3^-} f(x)$

Solution: $\lim_{x \to -3^-} f(x) = 3$

(b) $\lim_{x \to -2^+} f(x)$

Solution: $\lim_{x \to -2^+} f(x) = 3$

(c) $\lim_{x\to 2} f(x)$

Solution: $\lim_{x\to 2} f(x) = 3$

(d) $\lim_{x\to 4} f(x)$

Solution: $\lim_{x\to 4} f(x)$ does not exist.

(e) What are the *x*-values at which f(x) is not continuous on [-6, 6].

Solution: f(x) is not continuous at x = -3, x - 2, x = 0, x = 2, and at x = 4.

- 17. Let $f(x) = x^2 + 2x + 3$.
 - (a) Using the definition of the derivative, set up the limit that gives the derivative of f at x = 2.

Solution:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{(x^2 + 2x + 3) - 11}{x - 2}.$$

Or

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{((2+h)^2 + 2(2+h) + 3) - 11}{h}.$$

(b) Compute the limit from (a). Show your work. An answer without supporting work will receive no credit.

Solution: First limit:

$$f'(2) = \lim_{x \to 2} \frac{(x^2 + 2x + 3) - 11}{x - 2} = \lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$$
$$= \lim_{x \to 2} \frac{(x + 4)(x - 2)}{x - 2}$$
$$= \lim_{x \to 2} (x + 4) = 6$$

Second limit

$$f'(2) = \lim_{h \to 0} \frac{((2+h)^2 + 2(2+h) + 3) - 11}{h}$$

$$= \lim_{h \to 0} \frac{4 + 4h + h^2 + 4 + 2h + 3 - 11}{h}$$

$$= \lim_{h \to 0} \frac{6h + h^2}{h}$$

$$= \lim_{h \to 0} (6 + h) = 6$$

(c) Find the equation of the tangent line to f(x) at x = 2.

Solution: The slope of the tangent line is m = f'(2) = 6 and the tangent line passes through the point (2, f(2)) = (2, 11), so the equation of the tangent line is y = 11 + 6(x - 2).