Exam 2

Form A

Multiple Choice Questions

1. Suppose that $f(x)= \begin{cases}x+2 & \text { if } x \leq 2 \\ A x+B & \text { if } 2<x \leq 4 \\ 7 x-12 & \text { if } x>4\end{cases}$

Find the values of A and B which make $f(x)$ continuous everywhere.
A. $A=6, B=8$
B. $A=-6, B=8$
C. $A=6, B=-8$
D. $A=-6, B=-8$
E. There is no solution.

Solution: We need $\lim _{x \rightarrow a} f(x)=f(a)$ at both $a=2$ and $a=4$. $\lim _{x \rightarrow 2^{-}} f(x)=2+2=4$ and $\lim _{x \rightarrow 2^{+}} f(x)=2 A+B$ so we must have that $2 A+B=4$.
Likewise at $x=4, \lim _{x \rightarrow 4^{-}} f(x)=4 A+B$ and $\lim _{x \rightarrow 4^{+}} f(x)=7 \cdot 4-12=16$. This gives us two equations in two unknowns in which we can solve for A and B.

$$
\begin{aligned}
2 A+B & =4 \\
4 A+B & =16 \\
2 A & =12 \\
A & =6 \\
2 \cdot 6+B & =4 \\
B & =-8
\end{aligned}
$$

Thus, $A=6$ and $B=-8$.
2. Find the horizontal asymptotes of $f(x)=\frac{e^{x}}{1+e^{x}}$.
A. $y=0$
B. $y=1$
C. $y=1 / 2$
D. $y=0$ and $y=1$
E. $y=-1$

Solution: We need to fine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{e^{x}}{1+e^{x}}=\lim x \rightarrow \infty \frac{e^{x}}{1+e^{x}} \frac{e^{-x}}{e^{-x}}=\lim _{x \rightarrow \infty} \frac{1}{e^{-x}+1}=1 \\
\lim _{x \rightarrow-\infty} \frac{e^{x}}{1+e^{x}}=\frac{0}{1+0}=0
\end{array}
$$

Thus, there are two horizontal asymptotes: $y=1$ and $y=0$.
3. Which of the following statements is true if $f(x)$ is defined by

$$
f(x)= \begin{cases}\sin x & \text { if } x \leq-\pi / 4 \\ \cos x & \text { if } x>-\pi / 4\end{cases}
$$

A. $f(x)$ is continuous at $x=-\pi / 4$.
B. $f(x)$ has a jump discontinuity at $x=-\pi / 4$.
C. $f(x)$ has an infinite discontinuity at $x=-\pi / 4$.
D. $f(x)$ is not defined at $x=-\pi / 4$.
E. There is not enough information to determine the continuity of $f(x)$ at $x=-\pi / 4$.

Solution: Checking $\lim _{x \rightarrow-\pi / 4} \sin x=-\frac{1}{\sqrt{2}}$ and $\lim _{x \rightarrow-\pi / 4} \cos x=\frac{1}{\sqrt{2}}$. Thus, both limits exist but are not equal. This means that $f(x)$ has a jump discontinuity at $x=-\pi / 4$.
4. Suppose that f is a continuous function on the interval $[0,5]$ and we know that

$$
f(0)=1, f(1)=-1, f(2)=1, f(3)=-1, f(4)=1, \text { and } f(5)=-1
$$

Which of the following statements are true for any such f ?
A. There are at least five solutions of the equation $f(x)=0$ in the interval $[0,5]$.
B. There are at most five solutions of the equation $f(x)=0$ in the interval $[0,5]$.
C. There are exactly five solutions of the equation $f(x)=0$ in the interval $[0,5]$.
D. The equation $f(x)=-1$ has at most three solutions in the interval $[0,5]$.
E. The equation $f(x)=1$ has exactly three solutions in the interval $[0,5]$.

Solution: The function changes sign 5 times on the interval $[0,5]$. Thus, by the Intermediate Value Theorem there must be at least five solutions to $f(x)=0$ in that interval.
5. Find a formula for $\frac{d y}{d x}$ in terms of x and y, where $x^{2}+x y+y^{2}=1$.
A. $\frac{d y}{d x}=-\frac{2 x+y}{x+y}$
B. $\frac{d y}{d x}=-\frac{2 x}{x+2 y}$
C. $\frac{d y}{d x}=\frac{2 x+y}{x+2 y}$
D. $\frac{d y}{d x}=-\frac{2 x+y}{2 y}$
E. $\frac{d y}{d x}=-\frac{2 x+y}{x+2 y}$

Solution:

$$
\begin{aligned}
x^{2}+x y+y^{2} & =1 \\
2 x+\left(y+x \frac{d y}{d x}\right)+2 y \frac{d y}{d x} & =0 \\
(x+2 y) \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x} & =-\frac{2 x+y}{x+2 y}
\end{aligned}
$$

6. Find all values of x where $f^{\prime \prime \prime}(x)=0$ when $f(x)=x e^{2 x}$.
A. $x=3 / 2$
B. $x=2 / 3$
C. $x=-3 / 2$
D. $x=-2 / 3$
E. $x=-1$

Solution:

$$
\begin{aligned}
f(x) & =x e^{2 x} \\
f^{\prime}(x) & =e^{2 x}+2 x e^{2 x} \\
f^{\prime \prime}(x) & =2 e^{2 x}+2 e^{2 x}+4 x e^{2 x}=4 e^{2 x}+4 x e^{2 x} \\
f^{\prime \prime \prime}(x) & =8 e^{2 x}+4 e^{2 x}+8 x e^{2 x}=(12+8 x) e^{2 x}
\end{aligned}
$$

Setting $f^{\prime \prime \prime}(x)=0$ gives $(12+8 x) e^{2 x}=0$ which means $12+8 x=0$ giving us that $x=-3 / 2$.
7. Find $f^{\prime}(x)$ in terms of $g^{\prime}(x)$ where $f(x)=[g(x)]^{4}$.
A. $f^{\prime}(x)=4[g(x)]^{3}$
B. $f^{\prime}(x)=4[g(x)]^{3} g^{\prime}(x)$
C. $f^{\prime}(x)=4\left[g^{\prime}(x)\right]^{3}$
D. $f^{\prime}(x)=4[g x]^{3}\left[x g^{\prime}+g\right]$
E. $f^{\prime}(x)=4 g^{\prime}(x)$

Solution: From the Chain Rule,

$$
f^{\prime}(x)=4[g(x)]^{3} g^{\prime}(x)
$$

8. Find the derivative of $g(t)=\tan (\cos (2 t))$.
A. $g^{\prime}(t)=2 \sin (2 t) \sec ^{2}(\cos (2 t))$
B. $g^{\prime}(t)=\sin (2 t) \sec ^{2}(\cos (2 t))$
C. $g^{\prime}(t)=-\sin (2 t) \sec ^{2}(\cos (2 t))$
D. $g^{\prime}(t)=-2 \sin (2 t) \sec ^{2}(\cos (2 t))$
E. $g^{\prime}(t)=-2 \sec ^{2}(\sin (2 t))$

Solution: This is again using the Chain Rule.

$$
g^{\prime}(t)=\sec ^{2}(\cos (2 t))(-\sin (2 t))(2)=-2 \sin (2 t) \sec ^{2}(\cos (2 t))
$$

9. Find the derivative of

$$
g(x)=x^{5} \ln (9 x)
$$

A. $g^{\prime}(x)=x^{4}(1+5 \ln (9 x))$
B. $g^{\prime}(x)=1+\frac{\ln (9 x)}{9 x}$
C. $g^{\prime}(x)=x^{4}\left(\frac{1}{9}+5 \ln (9 x)\right)$
D. $g^{\prime}(x)=\frac{5}{9} x^{3}$
E. $g^{\prime}(x)=x^{4}(5 \ln (9 x)-1)$

Solution: This is the Product Rule.

$$
g^{\prime}(x)=5 x^{4} \ln (9 x)+x^{5} \frac{1}{9 x}(9)=5 x^{4} \ln (9 x)+x^{4}=x^{4}(1+5 \ln (9 x))
$$

10. Differentiate

$$
f(x)=\frac{x^{6}}{1-x^{5}}
$$

A. $f^{\prime}(x)=\frac{6 x^{5}}{1-5 x^{4}}$
B. $f^{\prime}(x)=\frac{\left(x^{5}-1\right)^{2}}{x^{5}(6 x-5)}$
C. $f^{\prime}(x)=\frac{x^{5}(6 x-5)}{\left(1-x^{5}\right)^{2}}$
D. $f^{\prime}(x)=\frac{x^{5}\left(1-x^{5}\right)}{\left(6-x^{5}\right)^{2}}$
E. $f^{\prime}(x)=\frac{x^{5}\left(6-x^{5}\right)}{\left(1-x^{5}\right)^{2}}$

Solution: This is the Quotient Rule.

$$
f^{\prime}(x)=\frac{\left(1-x^{5}\right) 6 x^{5}-x^{6}\left(-5 x^{4}\right)}{\left(1-x^{5}\right)^{2}}=\frac{6 x^{5}-6 x^{10}+5 x^{10}}{\left(1-x^{5}\right)^{2}}=\frac{x^{5}\left(6-x^{5}\right)}{\left(1-x^{5}\right)^{2}}
$$

11. Suppose that $F(x)=f(g(x))$ and $g(14)=2, g^{\prime}(14)=5, f^{\prime}(14)=15$, and $f^{\prime}(2)=11$. Find $F^{\prime}(14)$
A. $F^{\prime}(14)=140$
B. $F^{\prime}(14)=55$
C. $F^{\prime}(14)=24$
D. $F^{\prime}(14)=20$
E. $F^{\prime}(14)=17$

Solution: From the Chain Rule, $F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$, so

$$
F^{\prime}(14)=f^{\prime}(g(14)) g^{\prime}(14)=f^{\prime}(2) g^{\prime}(14)=11 \times 5=55
$$

12. If f and g are continuous functions with $f(9)=6$ and $\lim _{x \rightarrow 9}[2 f(x)-g(x)]=9$, find $g(9)$.
A. $g(9)=21$
B. $g(9)=24$
C. $g(9)=3$
D. $g(9)=15$
E. $g(9)=12$

Solution: We are given that $\lim _{x \rightarrow 9}[2 f(x)-g(x)]=9$. Since f and g are continuous and $f(9)=6$, we have

$$
\begin{aligned}
\lim _{x \rightarrow 9}[2 f(x)-g(x)] & =9 \\
2 \lim _{x \rightarrow 9} f(x)-\lim _{x \rightarrow 9} g(x) & =9 \\
2 f(9)-g(9) & =9 \\
12-g(9) & =9 \\
g(9) & =3
\end{aligned}
$$

Free Response Questions
13. Find the derivatives of the following functions.
(a) $f(x)=\ln (\cos (2 x))$.

Solution: By the Chain Rule

$$
f^{\prime}(x)=\frac{\cos (2 x)}{-\sin (2 x)}(2)=-\frac{2 \sin (2 x)}{\cos (2 x)}=-2 \tan (2 x)
$$

(b) $g(x)=\frac{4}{x^{5}}-\frac{8}{x^{4}}-\frac{3}{x^{3}}+700$.

Solution: First, rewrite $g(x)$.

$$
\begin{aligned}
g(x) & =4 x^{-5}-8 x^{-4}-3 x^{-3}+700 \\
g^{\prime}(x) & =-20 x^{-6}+32 x^{-5}+9 x^{-4} \\
& =-\frac{20}{x^{6}}+\frac{32}{x^{5}}+\frac{9}{x^{4}}
\end{aligned}
$$

(c) $h(x)=4 \ln \left(x^{2} e^{x}\right)$.

Solution: First, rewrite $h(x)$.

$$
\begin{aligned}
h(x) & =4\left(\ln \left(x^{2}\right)+\ln \left(e^{x}\right)\right) \\
& =8 \ln x+x \\
h^{\prime}(x) & =\frac{8}{x}+1
\end{aligned}
$$

14. (a) Find the equation of the tangent line to $2 x y^{2}-5 x^{2} y+192=0$ at the point $(4,4)$.

Solution: We need to find $\left.\frac{d y}{d x}\right|_{(4,4)}$.

$$
\begin{aligned}
2 x y^{2}-5 x^{2} y+192 & =0 \\
2 y^{2}+4 x y \frac{d y}{d x}-10 x y-5 x^{2} \frac{d y}{d x} & =0 \\
\left(4 x y-5 x^{2}\right) \frac{d y}{d x} & =10 x y-2 y^{2} \\
\frac{d y}{d x} & =\frac{10 x y-2 y^{2}}{4 x y-5 x^{2}}
\end{aligned}
$$

Now,

$$
\left.\frac{d y}{d x}\right|_{(4,4)}=\frac{10(4)(4)-2(4)^{2}}{4(4)(4)-5(4)^{2}}=-8
$$

So the equation of the tangent line is

$$
y=4-8(x-4)
$$

(b) Find $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\frac{3}{7} \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=\frac{3}{7} \times 1=\frac{3}{7} .
$$

15. Let $f(x)=\frac{x^{2}}{x+6}$.
(a) Find the derivative $f^{\prime}(x)$.

Solution: This is the Quotient Rule.

$$
f^{\prime}(x)=\frac{(x+6)(2 x)-x^{2}(1)}{(x+6)^{2}}=\frac{x^{2}+12 x}{(x+6)^{2}}
$$

(b) Find the equation of the tangent line to $f(x)$ at the point where $x=4$.

Solution: We need $f(4)$ and $f^{\prime}(4) . f(4)=\frac{16}{10}=\frac{8}{5}$. Meanwhile,

$$
f^{\prime}(4)=\frac{16+48}{100}=\frac{16}{25} .
$$

The equation of the tangent line is then

$$
y-\frac{8}{5}=\frac{16}{25}(x-4)
$$

16. This problem concerns the definition of the derivative using limits.
(a) State the formal definition of the derivative of a function $f(x)$ at the point $x=a$. Hint: Your definition should involve a limit.

Solution: The derivative of the function $f(x)$ at the point $x=a$ is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{s \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if this limit exists.
(b) Using the formal definition of derivative and the limit laws, find the derivative of the function $f(x)=2 x^{2}-1$. An answer that is unsupported or uses differentiation rules will receive no credit.

Solution:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{2(a+h)^{2}-1-\left(2 a^{2}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a^{2}+4 a h+2 h^{2}-1-2 a^{2}+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 a h+2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 4 a+2 h \\
f^{\prime}(a) & =4 a
\end{aligned}
$$

