19. (5 points) Library/Union/setDervChainRule/ur_dr_5_18.pg

Let $f(x)=2 e^{x \cos (x)}$. Find $f^{\prime}(x)$.
$f^{\prime}(x)=$ \qquad
Let $f(x)=x^{3}+2 x-1$ and let g be the inverse function to f. Find $g(2)$ and $g^{\prime}(2)$.

- A. $g(2)=11, g^{\prime}(2)=1 / 10$
- B. $g(2)=1, g^{\prime}(2)=5$
- C. $g(2)=1, g^{\prime}(2)=1 / 5$
- D. $g(2)=11, g^{\prime}(2)=10$
- E. $g(2)=-1, g^{\prime}(2)=2$

Let $p(x)=a x^{2}+b x$. Find values of a and b so that $p^{\prime}(2)=2$ and $p^{\prime \prime}(1)=2$.

- A. $a=2, b=1$
- B. $a=1, b=2$
- C. $a=1, b=-2$
- D. $a=2, b=-6$
- E. $a=2, b=2$

Suppose that $y(t)$ solves $y^{\prime}(t)=k y(t)$, where k is a constant. If $y(0)=3$ and $y(2)=9$, what is $y(6)$?

- A. 72
- B. 42
- C. 81
- D. 27
- E. 9

Find $f^{\prime}(x)$ if $f(x)=2 \tan ^{-1}(\sqrt{x})=2 \arctan (\sqrt{x})$.

- A. $f^{\prime}(x)=\frac{2}{1-x}$
- B. $f^{\prime}(x)=\frac{2}{1+x}$
- C. $f^{\prime}(x)=\frac{1}{\sqrt{x}(1+x)}$
- D. $f^{\prime}(x)=\frac{1}{\sqrt{x}(1-x)}$
- E. $f^{\prime}(x)=\frac{2}{\sqrt{x}(1+x)}$

17. (5 points) Library/Valdosta/APEX_Calculus/2.4/APEX_2.4_26.pg Compute the derivative of the given function.

$$
g(t)=-2 t^{7} e^{t}+2 \sin t \cos t
$$

$$
g^{\prime}(t)=
$$

\qquad

If the function f satisfies $f^{\prime}(3)=4$ and $f(3)=5$ and $g(x)=\left(x^{2}+1\right) f(x)$, find $g^{\prime}(3)$.

- A. 60
- B. 50
- C. 70
- D. 40
- E. 30

What is $\lim _{x \rightarrow 0} \frac{\sin (7 x) \cos \left(2 x^{2}\right)}{2 x}$?

- A. 7
- B. $1 / 2$
- C. $7 / 2$
- D. 0
- E. 1

Let $f(x)=\frac{\sin x}{2+x^{2}}$. What is $f^{\prime}(0) ?$

- A. -1
- B. 2
- C. $1 / 2$
-D. 0
- E. 1

The height in meters of a ball at time t seconds is given by $h(t)=-5 t^{2}+80$. Find the velocity of the ball at the instant when it hits the ground.

- A. -50 meters per second
- B. -35 meters per second
- C. -40 meters per second
- D. -30 meters per second
- E. -45 meters per second

What is the slope of the tangent line to the graph of the curve given by the equation $y^{6}-x^{3} y=2$ at the point $(-1,1)$?

- A. $7 / 3$
- B. $3 / 5$
- C. $3 / 7$
- D. 0
- E. 1/2

Find the value of a so that the tangent line to the graph of $f(x)=\ln \left(x^{2}+a\right)$ at the point $(1, f(1))$ has slope $1 / 2$.

- A. 0
- B. 1
- C. 3
- D. -1
- E. None of the above

20. (5 points) Library/ASU-topics/setDerivativeBasicFunctions/3-4-85.pg

A person x inches tall has a pulse rate approximately given by the function

$$
y=600 x^{-1 / 2} .
$$

The instantaneous rate of change of the pulse rate for a person that is:
(A) 30 inches tall $=$ \qquad
(B) 61 inches tall $=$ \qquad
Two cars start moving from the same point. One travels south at $80 \mathrm{mi} / \mathrm{h}$ and the other travels west at 60 mi / h. At what rate is the distance between the cars increasing three hours later?

- A. $50 \mathrm{mi} / \mathrm{h}$
- B. $150 \mathrm{mi} / \mathrm{h}$
-C. $100 \mathrm{mi} / \mathrm{h}$
- D. $200 \mathrm{mi} / \mathrm{h}$
- E. None of the above

Let f and g be two functions, and $h(x)=f(g(x))$. If $g(2)=3, g^{\prime}(2)=5, f(2)=7, f^{\prime}(2)=1, f(3)=-1$ and $f^{\prime}(3)=-2$, what is $h^{\prime}(2)$?

- A. -1
- B. 3
- C. -10
- D. 5
- E. 38

18. (5 points) Library/UMN/calculusStewartCCC/s_3_3_30.pg

Suppose that $f\left(\frac{\pi}{2}\right)=-8$ and $f^{\prime}\left(\frac{\pi}{2}\right)=7$, and let $g(x)=f(x) \sin x$ and $h(x)=\frac{\cos x}{f(x)}$. Answer the following questions.

1. Find $g^{\prime}(\pi / 2)$.

Answer: $g^{\prime}(\pi / 2)=$
2. Find $h^{\prime}(\pi / 2)$.

Answer: $h^{\prime}(\pi / 2)=$
16. (5 points) Library/ASU-topics/setDerivativeFunction/3-3-05.pg

Suppose that

$$
f(x+h)-f(x)=-8 h x^{2}-7 h x+4 h^{2} x-5 h^{2}+7 h^{3} .
$$

Find $f^{\prime}(x)$.
$f^{\prime}(x)=$ \qquad
The size of a population is given by the function $P(t)=1000 \cdot e^{0.04 t}$. Find the time t when the population is 3000 . Round your answer to one decimal place.

- A. 24.2
- B. 36.1
- C. 27.5
- D. 17.2
- E. 34.7

Find the instantaneous rate of change of the volume of a sphere with respect to its radius r when $r=\sqrt{3}$. Recall that the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$.

- A. 3π
- B. 4π
- C. 12π
- D. 6π
- E. None of the above

Let $f(x)=|2 x-4|$. Find all the points c where $f^{\prime}(c)$ does not exist.

- A. 0
- B. 1
- C. 2
- D. 0 and 2
- E. There are no such points.

