Exam 2

Solutions

Multiple Choice Questions

1. Calculate the slope of the secant line through the points on the graph where $x=1$ and $x=3$.

A. -1
B. 2
C. 0
D. 1
E. -2
2. Find $f(3)$ and $f^{\prime}(3)$, assuming that the tangent line to $y=f(x)$ at $x=3$ has equation $y=3 x-2$.
A. $f(3)=2, f^{\prime}(3)=3$
B. $f(3)=7, f^{\prime}(3)=3$
C. $f(3)=-2, f^{\prime}(3)=3$
D. $f(3)=3, f^{\prime}(3)=2$
E. $f(3)=9, f^{\prime}(3)=2$
3. Determine coefficients a and b such that $p(x)=x^{2}+a x+b$ satisfies $p(1)=11$ and $p^{\prime}(1)=11$.
A. $a=1, b=9$
B. $a=10, b=0$
C. $a=0, b=10$
D. $a=8, b=3$
E. $a=9, b=1$
4. The length of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{sec}$ and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{sec}$. When the length is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?
A. $190 \mathrm{~cm}^{2} / \mathrm{sec}$
B. $224 \mathrm{~cm}^{2} / \mathrm{sec}$
C. $140 \mathrm{~cm}^{2} / \mathrm{sec}$
D. $24 \mathrm{~cm}^{2} / \mathrm{sec}$
E. $200 \mathrm{~cm}^{2} / \mathrm{sec}$
5. Find a formula for $\frac{d y}{d x}$ in terms of x and y, where $x^{4} y+4 x y^{4}=x+y$.
A. $\frac{d y}{d x}=\frac{1-x^{4} y-16 x y^{3}}{4 x^{3} y+4 y^{4}-1}$
B. $\frac{d y}{d x}=\frac{-1}{1-4 x^{3}-16 y^{3}}$
C. $\frac{d y}{d x}=4 x^{3} y+x^{4}+4 y^{4}+4 x-1$
D. $\frac{d y}{d x}=\frac{4 x^{3} y+4 y^{4}-1}{1-x^{4}-16 x y^{3}}$
E. $\frac{d y}{d x}=\frac{-1}{1-x^{4}-16 x}$
6. Find $f^{\prime \prime \prime}(x)$ where $f(x)=x e^{x}$.
A. $f^{\prime \prime \prime}(x)=e^{x}$
B. $f^{\prime \prime \prime}(x)=(x+3) e^{x}$
C. $f^{\prime \prime \prime}(x)=(x+1) e^{x}$
D. $f^{\prime \prime \prime}(x)=(x+2) e^{x}$
E. $f^{\prime \prime \prime}(x)=3 x e^{x}$
7. Find $f^{\prime}(x)$ in terms of $g^{\prime}(x)$ where $f(x)=x^{2}[g(x)]^{2}$.
A. $f^{\prime}(x)=2 x[g(x)]^{2}+2 x^{2} g(x) g^{\prime}(x)$
B. $f^{\prime}(x)=4 x g^{\prime}(x)$
C. $f^{\prime}(x)=2 x\left[g^{\prime}(x)\right]^{2}$
D. $f^{\prime}(x)=2 x[g(x)]^{2}+x^{2}\left[g^{\prime}(x)\right]^{2}$
E. $f^{\prime}(x)=4 x g(x) g^{\prime}(x)$
8. Find the derivative of $g(x)=x \arctan (x)$. (Remember that $\arctan (x)$ is the same as $\tan ^{-1}(x)$.)
A. $g^{\prime}(x)=\frac{1}{1+x^{2}}$
B. $g^{\prime}(x)=\frac{x}{1+x^{2}}$
C. $g^{\prime}(x)=\arctan (x)+\frac{x}{1+x^{2}}$
D. $g^{\prime}(x)=\arctan (x)+\frac{1}{1+x^{2}}$
E. $g^{\prime}(x)=\arctan (x)$
9. Find the derivative of

$$
h(x)=\frac{\ln \left(x^{2}\right)}{x^{5}}
$$

A. $h^{\prime}(x)=\frac{1}{5 x^{6}}$
B. $h^{\prime}(x)=\frac{2}{5 x^{5}}$
C. $h^{\prime}(x)=\frac{1-5 x \ln \left(x^{2}\right)}{x^{7}}$
D. $h^{\prime}(x)=\frac{2-5 \ln \left(x^{2}\right)}{x^{6}}$
E. $h^{\prime}(x)=\frac{5 \ln \left(x^{2}\right)-2}{x^{6}}$
10. Differentiate

$$
f(x)=\frac{\cos (2 x)}{1-x^{2}}
$$

A. $f^{\prime}(x)=\frac{\sin (2 x)}{2 x}$
B. $f^{\prime}(x)=\frac{-2 x \cos (2 x)+2\left(1-x^{2}\right) \sin (2 x)}{\left(1-x^{2}\right)^{2}}$
C. $f^{\prime}(x)=\frac{2\left(1-x^{2}\right) \sin (2 x)+2 x \cos (2 x)}{\left(1-x^{2}\right)^{2}}$
D. $f^{\prime}(x)=\frac{-2\left(1-x^{2}\right) \sin (2 x)+2 x \cos (2 x)}{1-x^{4}}$
E. $f^{\prime}(x)=\frac{-2\left(1-x^{2}\right) \sin (2 x)+2 x \cos (2 x)}{\left(1-x^{2}\right)^{2}}$
11. Suppose that $g(x)=\sin \left(x^{2}-x-6\right)$.

Find $g^{\prime}(3)$
A. $\cos (5)$
B. 1
C. 0
D. 5
E. $\sin (5)$
12. The displacement (in meters) of a particle moving in a straight line is given by $s=$ $2 t^{2}-6 t+5$, where t is measured in seconds. Find the average velocity over the time interval $[6,8]$.
A. $63 \mathrm{~m} / \mathrm{sec}$
B. $4 \mathrm{~m} / \mathrm{sec}$
C. $44 \mathrm{~m} / \mathrm{sec}$
D. $8 \mathrm{~m} / \mathrm{sec}$
E. $22 \mathrm{~m} / \mathrm{sec}$

Free Response Questions
Show all of your work
13. Find the derivatives of the following functions.
(a) $f(x)=\ln (\tan (x))$.

Solution:

$$
f^{\prime}(x)=\frac{\sec ^{2}(x)}{\tan (x)}
$$

(b) $g(x)=\frac{4}{x^{3}}-\frac{6}{x^{2}}-\frac{8}{x}+10$.

Solution: First, rewrite $g(x)$

$$
\begin{aligned}
g(x) & =4 x^{-3}-6 x^{-2}-8 x^{-1}+10 \\
g^{\prime}(x) & =-12 x^{-4}+12 x^{-3}+8 x^{-2} \\
& =-\frac{12}{x^{4}}+\frac{12}{x^{3}}+\frac{8}{x^{2}}
\end{aligned}
$$

(c) $h(x)=4 \ln \left(x^{2} e^{x^{2}}\right)$.

Solution: First, rewrite $h(x)$

$$
\begin{aligned}
h(x) & =4 \ln \left(x^{2}\right)+4 \ln \left(e^{x^{2}}\right) \\
& =8 \ln x+4 x^{2} \\
h^{\prime}(x) & =\frac{8}{x}+8 x
\end{aligned}
$$

(d) $j(x)=\arcsin (2 x)$

Solution:

$$
j^{\prime}(x)=\frac{2}{\sqrt{1-4 x^{2}}}
$$

14. (a) Find the equation of the tangent line to $y^{2}=5 x^{4}-x^{2}$ at the point $(1,2)$.

Solution: We need to find $\left.\frac{d y}{d x}\right|_{(1,2)}$.

$$
\begin{aligned}
y^{2} & =5 x^{4}-x^{2} \\
2 y \frac{d y}{d x} & =20 x^{3}-2 x \\
\frac{d y}{d x} & =\frac{10 x^{3}-x}{y}
\end{aligned}
$$

Now,

$$
\left.\frac{d y}{d x}\right|_{(1,2)}=\frac{10-1}{2}=\frac{9}{2}
$$

So the equation of the tangent line is

$$
y=2+\frac{9}{2}(x-1)=\frac{9}{2} x-\frac{5}{2}
$$

(b) Find $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}$. (You may NOT use L'Hôpital's Rule to evaluate this.)

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (3 x)}{7 x}=\frac{3}{7} \lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=\frac{3}{7} \times 1=\frac{3}{7} .
$$

15. Let $f(x)=\frac{x^{3}}{x+8}$.
(a) Find the derivative $f^{\prime}(x)$.

Solution: By the Quotient Rule

$$
f^{\prime}(x)=\frac{(x+8)\left(3 x^{2}\right)-x^{3}(1)}{(x+8)^{2}}=\frac{2 x^{3}+24 x^{2}}{(x+8)^{2}}
$$

(b) Find the equation of the tangent line to $f(x)$ at the point where $x=2$.

Solution: $f(2)=8 / 10=4 / 5$ and

$$
f^{\prime}(2)=\frac{2(8)+24(4)}{100}=\frac{28}{25}
$$

Thus, the equation of the tangent line to the curve is

$$
y=\frac{4}{5}+\frac{28}{25}(x-2)=\frac{28}{25} x-\frac{36}{25}=1.12 x-1.44
$$

16. This problem concerns the definition of the derivative using limits.
(a) State the formal definition of the derivative of a function $f(x)$ at the point $x=a$. Hint: Your definition should involve a limit.

Solution: The derivative of the function $f(x)$ at the point $x=a$ is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

if this limit exists.
(b) Using the formal definition of derivative and the limit laws, find the derivative of the function $f(x)=x^{2}+x-1$. An answer that is unsupported or uses differentiation rules will receive no credit.

Solution:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{(a+h)^{2}+(a+h)-1-\left(2 a^{2}+a-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}+a+h-1-a^{2}-a+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}+h}{h} \\
& =\lim _{h \rightarrow 0} 2 a+h+1 \\
f^{\prime}(a) & =2 a+1
\end{aligned}
$$

