Find the number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=2 \sqrt{x}$ on the interval $[0,25]$.

- A. 0
- B. $\frac{25}{4}$
- C. $\frac{1}{5}$
- D. 5
- E. None of the above

Correct Answers:

- B

Find the value of the limit

$$
\lim _{x \rightarrow 0} \frac{\sin 4 x-4 x}{x^{3}} .
$$

- A. $-\frac{2}{3}$
- B. $-\frac{16}{3}$
- C. $-\frac{32}{3}$
- D. $-\frac{4}{3}$
- E. None of the above

Correct Answers:

- C

Find two positive numbers x and y whose sum is 7 so that $x^{2} y-8 x$ is a maximum.

- A. $\frac{3}{2}, \frac{11}{2}$
- B. 5,2
- C. $\frac{7}{2}, \frac{7}{2}$
- D. $4,3^{2}$
- E. 6,1

Correct Answers:

- D

Find the intervals where $f(x)=\frac{\ln (2 x)}{x}$ is increasing and where it is decreasing.

- A. increasing on $(20, \infty)$, decreasing on $(0,20)$.
- B. increasing on $\left(0, \frac{e}{2}\right)$, decreasing on $\left(\frac{e}{2}, \infty\right)$
- C. increasing on $(2 e, \infty)$, decreasing on $(0,2 e)$
- D. increasing on $\left(0, \frac{1}{5}\right)$, decreasing on $\left(\frac{1}{5}, \infty\right)$
- E. None of the above

Correct Answers:

- B

Find the critical number(s) of the function $f(x)=e^{x^{2}-10 x}$.
-A. 5

- B. $\sqrt{10}$ and $-\sqrt{10}$
-C. 5 and -5
- D. $\sqrt{10}$
- E. The function has no critical numbers.

Correct Answers:

- A

Find the local maxima and local minima, if any, of the function $f(x)=2 x^{3}-3 x^{2}-36 x-5$.

- A. The local maximum is $f(3)=86$ and the local minimum is $f(-2)=-39$.
- B. The local maximum is $f(-3)=22$ and the local minimum is $f(2)=-73$.
- C. The local maximum is $f(2)=73$ and the local minimum is $f(-3)=-22$.
- D. The local maximum is $f(-2)=39$ and the local minimum is $f(3)=-86$.
- E. None of the above.

Correct Answers:

- D

Suppose that $f^{\prime}(x)=x^{2}(x+2)(x-2)(x-4)$. Find the open interval or open intervals where f is decreasing. (Read the problem carefully. The given function is $f^{\prime}(x)$, not $f(x)$.)

- A. $(-2,2) \cup(4, \infty)$
- B. $(-\infty,-2) \cup(2, \infty)$
- C. $(-2,2) \cup(4, \infty)$
- D. $(2,4)$
- E. $(-\infty,-2) \cup(2,4)$

Correct Answers:

- E

You are given that $f^{\prime}(x)=x^{2}(x+2)(x-2)(x-4)$. Find the values of x that give the local maximum and local minimum values of the function $f(x)$. (Read the problem carefully. The given function is $f^{\prime}(x)$, not $f(x)$.)

- A. Local maximum value of f at $x=0$ and local minimum values of f at $x=-2,4$.
- B. Local maximum values of f at $x=-2,4$ and local minimum value of f at $x=0$.
- C. Local maximum value of f at $x=2$ and local minimum values of f at $x=-2,4$.
- D. Local maximum values of f at $x=-2,2$ and local minimum values of f at $x=0,4$.
- E. Local maximum values of f at $x=0,4$ and local minimum values of f at $x=-2,2$.

Correct Answers:

- C

Assume that $f^{\prime \prime}(x)=x^{2}(x-2)(x-4)$. Find the points of inflection of the function f. (Read the problem carefully. The given function is $f^{\prime \prime}(x)$, not $f(x)$.)

- A. $x=4$
- B. $x=2,4$
- C. $x=2$
- D. $x=0,2,4$
- E. $x=0,4$

Correct Answers:

- B

If $f^{\prime \prime}(x)=18 x+36 x^{2}$, find $f(x)$.

- A. $f(x)=2 x^{3}+x^{4}+C x+D$
- B. $f(x)=3 x^{3}+3 x^{4}+C x+D$
- C. $f(x)=x^{3}+4 x^{4}+C x+D$
- D. $f(x)=4 x^{3}+8 x^{4}+C x+D$
- E. $f(x)=6 x^{3}+4 x^{4}+C x+D$

Correct Answers:

- B

Use the Fundamental Theorem of Calculus to find the derivative of the function:

$$
g(x)=\int_{5}^{x^{2}} t^{5} \sin (t) d t
$$

- A. $g^{\prime}(x)=2 x^{11} \sin \left(x^{2}\right)$
- B. $g^{\prime}(x)=10 x^{5} \sin \left(x^{2}\right)$
- C. $g^{\prime}(x)=5 x^{8} \sin \left(x^{2}\right)$
- D. $g^{\prime}(x)=5 x^{8} \cos \left(x^{2}\right)$
- E. $g^{\prime}(x)=x^{10} \sin \left(x^{2}\right)$

Correct Answers:

- A

An object travels with a velocity of $10 \mathrm{~m} / \mathrm{s}$ for $0 \leq t \leq 3$ seconds and a velocity of $15 \mathrm{~m} / \mathrm{s}$ for $3<t \leq 5$ seconds. How far did it travel?

- A. 60 meters
- B. 70 meters
- C. 50 meters
- D. 65 meters
- E. None of the above.

Correct Answers:

- A

13. (10 points) Library/Valdosta/APEX_Calculus/3.3/APEX_3.3_23.pg

NOTE: When using interval notation in WeBWorK, remember that:
You use 'INF' for ∞ and '-INF' for $-\infty$.
And use 'U' for the union symbol.
Enter DNE if an answer does not exist.

$$
f(x)=x^{3}-3 x
$$

a) Find the critical numbers of f. \qquad (Separate multiple answers by commas.)
b) Determine the intervals on which f is increasing and decreasing.
f is increasing on: \qquad
f is decreasing on: \qquad
c) Use the First Derivative Test to determine whether each critical point is a relative maximum, minimum, or neither.
Relative maxima occur at $x=$ \qquad (Separate multiple answers by commas.)
Relative minima occur at $x=$ \qquad (Separate multiple answers by commas.)
Solution: (Instructor solution preview: show the student solution after due date.)

Solution:

$f^{\prime}(x)=3 x^{2}-3$. Set equal to zero and solve.

$$
\begin{aligned}
3\left(x^{2}-1\right) & =0 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

There are two critical numbers, $x=-1,1$.
Use the first derivative test, choosing sample points in each interval.

Interval	Sign of f^{\prime} at sample	Conclusion
$(-\infty,-1)$	positive	increasing
$(-1,1)$	negative	decreasing
$(1, \infty)$	positive	increasing

There is a relative maximum at $x=-1$ and a relative minimum at $x=1$
Correct Answers:

- $-1,1$
- (-infinity,-1) U (1,infinity)
- $(-1,1)$
- -1
- 1

14. (5 points) Library/Valdosta/APEX_Calculus/6.7/APEX_6.7_17.pg

Evaluate the limit, using L'Hôpital's Rule.
Enter INF for $\infty,-\mathbf{I N F}$ for $-\infty$, or DNE if the limit does not exist, but is neither ∞ nor $-\infty$.
$\lim _{x \rightarrow 0} \frac{2 e^{x}-2 x-2}{15 x^{2}}=$ \qquad
Solution: (Instructor solution preview: show the student solution after due date.)

$$
\lim _{x \rightarrow 0} \frac{2 e^{x}-2 x-2}{15 x^{2}}=\lim _{x \rightarrow 0} \frac{2 e^{x}-2}{30 x}=\lim _{x \rightarrow 0} \frac{2 e^{x}}{30}=\frac{2}{30}=\frac{1}{15} .
$$

Correct Answers:

- 2/30

15. (10 points) Library/Union/setDervConcavity/4-3-52.pg

Let $f(x)=-x^{4}-4 x^{3}+2 x+4$. Find the open intervals on which f is concave up (down). Then determine the x-coordinates of all inflection points of f.

1. f is concave up on the intervals
2. f is concave down on the intervals
\qquad
3. The inflection points occur at $x=$ \qquad
Notes: In the first two, your answer should either be a single interval, such as $(0,1)$, a comma separated list of intervals, such as (-inf, 2), $(3,4)$, or the word "none".

In the last one, your answer should be a comma separated list of x values or the word "none".
Correct Answers:

- $(-2,0)$
- (-infinity,-2), (0,infinity)
- 0, -2

16. (5 points) Library/UCSB/Stewart5_4_10/Stewart5_4_10_3.pg

Find the most general antiderivative of $f(x)=-4-2 x^{3}-8 x^{5}-6 x^{7}$.
Note: Any arbitrary constants used must be an upper-case "C".
$F(x)=$ \qquad
Correct Answers:

- $-4 * x+-2 * x^{\wedge} 4 / 4+-8 * x^{\wedge} 6 / 6+-6 * x^{\wedge} 8 / 8+C$

17. (5 points) Library/UCSB/Stewart5_5_2/Stewart5_5_2_33/Stewart5_5_2_33.pg Consider the graph of the function $f(x)$:

$y A$									
		1			$y=$	$f(x)$			
,									
					V				
0		2		4	-	6		8	
								,	

Evaluate the following integrals by interpreting them in terms of areas:
(a) $\int_{0}^{2} f(x) d x=$ \qquad
(b) $\int_{0}^{5} f(x) d x=$ \qquad
(c) $\int_{5}^{7} f(x) d x=$ \qquad
(d) $\int_{0}^{9} f(x) d x=$ \qquad
Correct Answers:

- 4
- 10
- -3
- 2

18. (5 points) Library/Wiley/setAnton_Section_5.6/Anton_5_6_060.pg

Use the Fundamental Theorem of Calculus to find the derivative.
$\frac{d}{d x} \int_{1}^{x} \frac{d t}{8+\sqrt{t}}=$ \qquad
Solution: (Instructor solution preview: show the student solution after due date.)
SOLUTION
Using Part 2 of the Fundemental Theorem of Calculus

$$
\frac{d}{d x} \int_{1}^{x} \frac{d t}{8+\sqrt{t}}=\frac{1}{8+\sqrt{x}}
$$

Correct Answers:

- $1 /[8+\mathrm{sqrt}(\mathrm{x})]$

