David Royster Assignment Exam03 due 04/14/2020 at 07:00pm EDT

MA113S20

Find the number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x) = 2\sqrt{x}$ on the interval [0, 25].

• A. 0 • B. $\frac{25}{4}$ • C. $\frac{1}{5}$ • D. 5 • E. None of the above

Find the value of the limit

$$\lim_{x\to 0}\frac{\sin 4x-4x}{x^3}$$

• A.
$$-\frac{2}{3}$$

• B. $-\frac{16}{3}$
• C. $-\frac{32}{3}$
• D. $-\frac{4}{3}$
• E. None of the above

0

Find two positive numbers x and y whose sum is 7 so that $x^2y - 8x$ is a maximum.

- A. $\frac{3}{2}, \frac{11}{2}$ B. 5,2 C. $\frac{7}{2}, \frac{7}{2}$ D. 4,3

- E. 6, 1

Find the intervals where $f(x) = \frac{\ln(2x)}{x}$ is increasing and where it is decreasing.

- A. increasing on (20,∞), decreasing on (0,20).
 B. increasing on (0, ^e/₂), decreasing on (^e/₂,∞)
 C. increasing on (2e,∞), decreasing on (0,2e)
 D. increasing on (0, ¹/₅), decreasing on (¹/₅,∞)
- E. None of the above

Find the critical number(s) of the function $f(x) = e^{x^2 - 10x}$.

- A. 5
- B. $\sqrt{10}$ and $-\sqrt{10}$
- C. 5 and −5
- D. √10
- E. The function has no critical numbers.

Find the local maxima and local minima, if any, of the function $f(x) = 2x^3 - 3x^2 - 36x - 5$.

- A. The local maximum is f(3) = 86 and the local minimum is f(-2) = -39.
- B. The local maximum is f(-3) = 22 and the local minimum is f(2) = -73.
- C. The local maximum is f(2) = 73 and the local minimum is f(-3) = -22.
- D. The local maximum is f(-2) = 39 and the local minimum is f(3) = -86.
- E. None of the above.

Suppose that $f'(x) = x^2(x+2)(x-2)(x-4)$. Find the open interval or open intervals where f is decreasing. (Read the problem carefully. The given function is f'(x), not f(x).)

- A. $(-2,2) \cup (4,\infty)$
- B. $(-\infty, -2) \cup (2, \infty)$
- C. $(-2,2) \cup (4,\infty)$
- D. (2,4)
- E. $(-\infty, -2) \cup (2, 4)$

You are given that $f'(x) = x^2(x+2)(x-2)(x-4)$. Find the values of x that give the local maximum and local minimum values of the function f(x). (Read the problem carefully. The given function is f'(x), not f(x).)

- A. Local maximum value of f at x = 0 and local minimum values of f at x = -2, 4.
- B. Local maximum values of f at x = -2, 4 and local minimum value of f at x = 0.
- C. Local maximum value of f at x = 2 and local minimum values of f at x = -2, 4.
- D. Local maximum values of f at x = -2, 2 and local minimum values of f at x = 0, 4.
- E. Local maximum values of f at x = 0,4 and local minimum values of f at x = -2,2.

Assume that $f''(x) = x^2(x-2)(x-4)$. Find the points of inflection of the function f. (Read the problem carefully. The given function is f''(x), not f(x).)

- A. x = 4
- B. *x* = 2,4
- C. x = 2
- D. *x* = 0, 2, 4
- E. *x* = 0,4

If $f''(x) = 18x + 36x^2$, find f(x).

- A. $f(x) = 2x^3 + x^4 + Cx + D$ • B. $f(x) = 3x^3 + 3x^4 + Cx + D$
- C. f(x) = x³ + 4x⁴ + Cx + D
 D. f(x) = 4x³ + 8x⁴ + Cx + D
- E. $f(x) = 6x^3 + 4x^4 + Cx + D$

Use the Fundamental Theorem of Calculus to find the derivative of the function:

$$g(x) = \int_5^{x^2} t^5 \sin(t) dt.$$

- A. $g'(x) = 2x^{11}\sin(x^2)$
- R. $g'(x) = 2x^{3} \sin(x^{2})$ B. $g'(x) = 10x^{5} \sin(x^{2})$ C. $g'(x) = 5x^{8} \sin(x^{2})$ D. $g'(x) = 5x^{8} \cos(x^{2})$ E. $g'(x) = x^{10} \sin(x^{2})$

An object travels with a velocity of 10 m/s for $0 \le t \le 3$ seconds and a velocity of 15 m/s for $3 < t \le 5$ seconds. How far did it travel?

- A. 60 meters
- B. 70 meters
- C. 50 meters
- D. 65 meters
- E. None of the above.

13. (10 points) Library/Valdosta/APEX_Calculus/3.3/APEX_3.3_23.pg

NOTE: When using interval notation in WeBWorK, remember that: You use 'INF' for ∞ and '-INF' for $-\infty$. And use 'U' for the union symbol. Enter **DNE** if an answer does not exist.

$$f(x) = x^3 - 3x$$

a) Find the critical numbers of f. _____ (Separate multiple answers by commas.)

b) Determine the intervals on which f is increasing and decreasing.

f is increasing on: $_$

f is decreasing on: _____

c) Use the First Derivative Test to determine whether each critical point is a relative maximum, minimum, or neither.

Relative maxima occur at x = _____ (Separate multiple answers by commas.)

Relative minima occur at x = _____ (Separate multiple answers by commas.)

14. (5 points) Library/Valdosta/APEX_Calculus/6.7/APEX_6.7_17.pg Evaluate the limit, using L'Hôpital's Rule. Enter INF for ∞ , -INF for $-\infty$, or DNE if the limit does not exist, but is neither ∞ nor $-\infty$.

 $\lim_{x \to -\infty} \frac{2e^{x} - 2x - 2}{15 - 2} =$

 $x \rightarrow 0$ 15 x^2

15. (10 points) Library/Union/setDervConcavity/4-3-52.pg

Let $f(x) = -x^4 - 4x^3 + 2x + 4$. Find the open intervals on which f is concave up (down). Then determine the x-coordinates of all inflection points of f.

1. *f* is concave up on the intervals

2. *f* is concave down on the intervals

3. The inflection points occur at x = _____

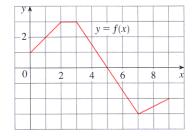
Notes: In the first two, your answer should either be a single interval, such as (0,1), a comma separated list of intervals, such as (-inf, 2), (3,4), or the word "none".

In the last one, your answer should be a comma separated list of *x* values or the word "none".

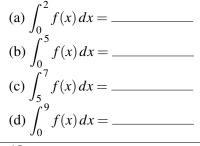
16. (5 points) Library/UCSB/Stewart5_4_10/Stewart5_4_10_3.pg

Find the most general antiderivative of $f(x) = -4 - 2x^3 - 8x^5 - 6x^7$. Note: Any arbitrary constants used must be an upper-case "C". F(x) =______

```
17. (5 points) Library/UCSB/Stewart5_5_2/Stewart5_5_2_33/Stewart5_5_2_33.pg Consider the graph of the function f(x):
```



Evaluate the following integrals by interpreting them in terms of areas:



18. (5 points) Library/Wiley/setAnton_Section_5.6/Anton_5_6_00.pg Use the Fundamental Theorem of Calculus to find the derivative.

$$\frac{d}{dx}\int_1^x \frac{dt}{8+\sqrt{t}} = ----$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America