Exam 3

Solutions

Multiple Choice Questions

1. If $\int_{0}^{9} f(x) d x=6$ and $\int_{0}^{9} g(x) d x=5$, find $\int_{0}^{9}(5 f(x)-7 g(x)+2) d x$
A. -5
B. 13
C. 65
D. 67
E. 83
2. Find the general antiderivative of $f(x)=1 / x+\sin (x)+2 \cos (x)$ on $(0, \infty)$.
A. $-1 / x^{2}-\cos (x)+2 \sin (x)+C$
B. $1 / x^{2}+\cos (x)+2 \sin (x)+C$
C. $\ln (x)+\cos (x)+2 \sin (x)+C$
D. $\ln (x)-\cos (x)+2 \sin (x)+C$
E. $\ln (x)+\cos (x)-2 \sin (x)+C$
3. Find the largest area of a rectangle if its perimeter is 60 meters.
A. 15 square meters
B. 32 square meters
C. 50 square meters
D. 225 square meters
E. 900 square meters
4. Suppose f is a differentiable function, $f(2)=3$ and $f^{\prime}(x) \leq 6$ for $2 \leq x \leq 4$, how large can $f(4)$ possibly be?
A. 6
B. 9
C. 12
D. 13
E. 15
5. Find all of the critical numbers for the function $g(x)=x^{3}-2 x^{2}-4 x+144$.
A. $x=0$ only
B. $x=2$ only
C. $x= \pm 12$
D. $x=-\frac{2}{3}$ and $x=2$
E. $x=3$ and $x=2$
6. Find the value of the limit

$$
\lim _{x \rightarrow 0} \frac{3 \sin (4 x)-12 x}{x^{3}}
$$

A. -2
B. -4
C. -8
D. -16
E. -32
7. If $\int_{0}^{3} f(x) d x=13$ and $\int_{0}^{2} f(x) d x=7$, find $\int_{2}^{3} f(x) d x$.
A. -6
B. 6
C. 7
D. 13
E. 20
8. Find $f(x)$ if $f^{\prime}(x)=3 x^{2}-2 \sin (x)$ and $f(0)=5$.
A. $f(x)=x^{3}+2 \cos (x)$
B. $f(x)=6 x-2 \sin (x)+5$
C. $f(x)=x^{3}+2 \cos (x)+3$
D. $f(x)=x^{3}+2 \cos (x)-5$
E. $f(x)=x^{3}-2 \cos (x)+7$
9. Where does the function $f(x)=x^{3}-9 x^{2}$ have a point of inflection?
A. $x=-4$
B. $x=0$
C. $x=1$
D. $x=2$
E. $x=3$
10. An athlete runs with velocity $24 \mathrm{~km} / \mathrm{h}$ for 10 minutes, $18 \mathrm{~km} / \mathrm{h}$ for 5 minutes, and $30 \mathrm{~km} / \mathrm{h}$ for 5 minutes. Compute the total distance traveled.
A. 5 km
B. 6 km
C. 7 km
D. 8 km
E. 9 km
11. Find the absolute maximum value of $f(x)=x^{3}-6 x^{2}+9 x-5$ on the interval $[0,5]$.
A. 10
B. 14
C. 15
D. 20
E. 48
12. Find $\int_{0}^{4} f(x) d x$ if

$$
f(x)= \begin{cases}2 & x<2 \\ -2 x+1 & x \geq 2\end{cases}
$$

A. -12
B. -6
C. 0
D. 8
E. 22
13. You are given that $f^{\prime}(x)=x^{2}(x+2)(x-2)(x-4)$. Find the values of x that give the local maximum and local minimum values of the function $f(x)$. (Read the problem carefully. The given function is $f^{\prime}(x)$, not $f(x)$.)
A. Local maximum value of $f(x)$ at $x=0$ and local minimum values of $f(x)$ at $x=-2,4$.
B. Local maximum value of $f(x)$ at $x=2$ and local minimum values of $f(x)$ at $x=-2,4$.
C. Local maximum values of $f(x)$ at $x=-2,4$ and local minimum value of $f(x)$ at $x=0$.
D. Local maximum values of $f(x)$ at $x=-2,2$ and local minimum values of $f(x)$ at $x=0,4$.
E. Local maximum values of $f(x)$ at $x=0,4$ and local minimum values of $f(x)$ at $x=-2,2$.
14. Assume that $g^{\prime \prime}(x)=x^{2}(x-2)(x-4)$. Find the points of inflection of the function $g(x)$. (Read the problem carefully. The given function is $g^{\prime \prime}(x)$, not $g(x)$.)
A. $x=2$
B. $x=4$
C. $x=0,4$
D. $x=2,4$
E. $x=0,2,4$

Free Response Questions
Show all of your work
15. (a) Find the following limit:

$$
\lim _{x \rightarrow 0} \frac{1-e^{x}}{\ln (x+1)}
$$

Solution: Using l'Hôpital's Rule, we have

$$
\lim _{x \rightarrow 0} \frac{1-e^{x}}{\ln (x+1)}=\lim _{x \rightarrow 0} \frac{-e^{x}}{1 / x+1}=-1
$$

(b) Find the value of A for which we can use l'Hôpital's rule to evaluate the limit $\lim _{x \rightarrow 2} \frac{x^{2}+A x-2}{x-2}$ and find the value of the limit.

Solution: We need $x^{2}+A x-2$ to be zero when $x=2$ then we can use l'Hôpital's Rule. At $x=2$ we need $2^{2}+2 A-2=0$ or $A=-1$. Thus,

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}=\lim _{x \rightarrow 2} 2 x-11=3
$$

16. A graph of $f(x)$ is shown above. Using the geometry of the graph, evaluate the definite integrals. The grid lines in the above graph are one unit apart.
(a) $\int_{0}^{2} f(x) d x$

$$
\text { Solution: } \int_{0}^{2} f(x) d x=5
$$

(b) $\int_{0}^{5} f(x) d x$

Solution: $\int_{0}^{5} f(x) d x=11$
(c) $\int_{5}^{7} f(x) d x$

Solution: $\int_{5}^{7} f(x) d x=-3$
(d) $\int_{3}^{7} f(x) d x$

Solution: $\int_{3}^{7} f(x) d x=0$
(e) $\int_{0}^{9} f(x) d x$

Solution: $\int_{0}^{9} f(x) d x=4$
17. Let $f(x)=x^{4}-32 x^{2}+7$. Be sure to justify each of your answers below.
(a) Find the intervals where $f(x)$ is increasing and the intervals where $f(x)$ is decreasing.

Solution: $f^{\prime}(x)=4 x^{3}-64 x$. Setting $f^{\prime}(x)=0$, we get three critical points: $x=0, x=4, x=-4$. Checking the sign of the derivative, $f^{\prime}(x)<0$ for $x<-4$ and for $0<x<4$ so the function is decreasing on $(-\infty,-4)$ and on $(0,4)$. It is increasing on $(-4,0)$ and on $(4, \infty)$.
(b) Find the intervals where $f(x)$ is concave up and the intervals where $f(x)$ is concave down.

Solution: $f^{\prime \prime}(x)=12 x^{2}-64$. There are possible inflection points at $x=$ $\pm 4 / \sqrt{3}$. Checking the signs of the second derivative, we find that $f^{\prime \prime}(x)>0$ on $(-\infty,-4 / \sqrt{3})$ and on $(4 / \sqrt{3}, \infty)$ so it is concave up there. It is concave down on the interval $(-4 / \sqrt{3}, 4 / \sqrt{3})$.
(c) Find the points that give local maximum values of $f(x)$, the points that give local minimum values of $f(x)$, and the points of inflection of $f(x)$.

Solution: $f(x)$ has a local maximum of 7 at $x=0$ and local minimum value of -249 at $x=-4$ and $x=4$. The x-coordinates of the points of inflection are $\pm 4 / \sqrt{3}$.

