Exam 4

Solutions

Multiple Choice Questions

1. Assuming that $\int_{0}^{5} f(x) d x=5$ and $\int_{0}^{5} g(x)=12$, find

$$
\int_{0}^{5}\left(3 f(x)-\frac{1}{3} g(x)\right) d x
$$

A. 19
B. 11
C. 15
D. 17
E. 4

Solution:

$$
\int_{0}^{5}\left(3 f(x)-\frac{1}{3} g(x)\right) d x=3 \int_{0}^{5} f(x) d x-\frac{1}{3} \int_{0}^{5} g(x) d x=3 \cdot 5-\frac{1}{3} \cdot 12=11
$$

2. Find

$$
\int_{3}^{0}\left(4 t^{3}-2 t^{2}\right) d t
$$

A. 63
B. 90
C. -54
D. -63
E. -90

Solution:

$$
\int_{3}^{0}\left(4 t^{3}-2 t^{2}\right) d t=-\int_{0}^{3} 4 t^{3}-2 t^{2} d t=-\left(t^{4}-\frac{2}{3} t^{3}\right]_{0}^{3}=-63
$$

3. The traffic flow rate past a certain point on a highway is $f(t)=1500+2500 t-270 t^{2}$ where t is in hours and $t=0$ is 8 AM . How many cars pass by during the time interval from 8 to 11 AM ?
A. 13320
B. 2040
C. 47960
D. 34640
E. 45920

Solution:

$$
\int_{0}^{3}\left(1500+2500 t-270 t^{2}\right) d t=\left(1500 t+1250 t^{2}-90 t^{3}\right]_{0}^{3}=13,320
$$

4. Find the equation of the tangent line to $f(x)=x e^{x}+\cos x$ at $x=0$.
A. $y=x-1$
B. $y=1-x$
C. $y=-1-x$
D. $y=1+x$
E. None of these.

Solution: The slope of the tangent line is the derivative of the function at $x=0$, and the equation of the tangent line is $y=f(0)+f^{\prime}(0)(x-0)$. So, $f(0)=0+1=$ 1. $f^{\prime}(x)=e^{x}+x e^{x}-\sin x$ and $f^{\prime}(0)=1$. Thus, the equation of the tangent line to $f(x)$ at $x=0$ is $y=1+x$.
5. Let $g(x)$ be a differentiable function such that $\lim _{x \rightarrow 0} g(x)=1$ and $\lim _{x \rightarrow 0} g^{\prime}(x)=4$. Compute the limit

$$
\lim _{x \rightarrow 0} \frac{x \cos x}{g(x)-1}
$$

A. 0
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$
E. ∞

Solution: Since $\lim _{x \rightarrow 0} \frac{x \cos x}{g(x)-1}=\frac{0}{0}$, we have an indeterminant form of the form $\frac{0}{0}$, so we can use l'Hospital's Rule and

$$
\lim _{x \rightarrow 0} \frac{x \cos x}{g(x)-1}=\lim _{x \rightarrow 0} \frac{\cos x-x \sin x}{g^{\prime}(x)}=\frac{1}{4}
$$

6. Find the sixth-degree Taylor polynomial approximation of $\cos x$ centered at $a=0$. Recall that the N-th degree Taylor polynomial for $f(x)$ at $x=a$ is

$$
T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

A. $x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$
B. $1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}$
C. $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}$
D. $1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}$
E. None of the above

Solution: We need to find the first six derivatives of $f(x)=\cos x$ and then evaluate these at $a=0$.

$$
\begin{array}{rlrl}
f(x) & =\cos x & f(0) & =1 \\
f^{\prime}(x) & =-\sin x & f^{\prime}(0) & =0 \\
f^{\prime \prime}(x) & =-\cos x & f^{\prime \prime}(0) & =-1 \\
f^{\prime \prime \prime}(x) & =\sin x & f^{\prime \prime \prime}(0) & =0 \\
f^{(4)}(x) & =\cos x & f^{(4)}(0) & =1 \\
f^{(5)}(x) & =-\sin x & f^{(5)}(0) & =0 \\
f^{(6)}(x) & =-\cos x & f^{(6)}(0) & =-1
\end{array}
$$

So, by what we are given and what we just computed,

$$
\begin{aligned}
T_{6}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\frac{f^{(5)}(0)}{5!} x^{5}+\frac{f^{(6)}(0)}{6!} x^{6} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}
\end{aligned}
$$

7. Suppose $G(x)=\int_{1}^{x^{2}} t \ln (t) d t$. Find $G^{\prime}(2)$.
A. $2 \ln (2)$
B. $4 \ln (4)$
C. $1+\ln (2)$
D. $8 \ln (4)-\frac{15}{4}$
E. $16 \ln (4)$

Solution: By the Fundamental Theorem of Calculus and the Chain Rule, $G^{\prime}(x)=$ $\left(x^{2} \ln \left(x^{2}\right)\right)(2 x)$, so $G^{\prime}(2)=16 \ln (4)$.
8. Find

$$
\int_{0}^{1} \frac{e^{x}+1}{e^{x}+x} d x
$$

A. 1
B. -1
C. $\frac{1}{e+1}-1$
D. $\frac{1}{(e+1)^{2}}$
E. $\ln (e+1)$

Solution: This is done by substitution. Let $u=e^{x}+x$, then $d u=\left(e^{x}+1\right) d x$, $u=1$ when $x=0$, and $u=e+1$ when $x=1$.

$$
\int_{0}^{1} \frac{e^{x}+1}{e^{x}+x} d x=\int_{1}^{e+1} \frac{1}{u} d u=\left.\ln (u)\right|_{1} ^{e+1}=\ln (e+1)
$$

9. The linearization for $f(x)=\sqrt{x+3}$ at $x=1$ is
A. $L(x)=2+\frac{1}{2}(x-1)$
B. $L(x)=4+\frac{1}{4}(x-1)$
C. $L(x)=2+\frac{1}{4}(x-1)$
D. $L(x)=4+\frac{1}{8}(x-1)$
E. $L(x)=2+\frac{1}{4} x-1$

Solution: Recall that the linearization of a function at a point is just the equation of the tangent line to the curve at that point. Thus, we need $f(1)$ and $f^{\prime}(1) . f(1)=$ 2 and $f^{\prime}(x)=\frac{1}{2}(x+3)^{-1 / 2}$ so $f^{\prime}(1)=\frac{1}{4}$. Then the linearization at $x=1$ is $L(x)=2+\frac{1}{4}(x-1)$.
10. Find the slope of the tangent line to the curve $x^{2}-x y-y^{2}=1$ at the point $(2,1)$.
A. $\frac{3}{4}$
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. 0
E. $-\frac{3}{4}$

Solution: Use implicit differentiation to find the derivative, $\frac{d y}{d x}$.

$$
\begin{aligned}
x^{2}-x y-y^{2} & =1 \\
2 x-\left(y+x \frac{d y}{d x}\right)-2 y \frac{d y}{d x} & =0 \\
x \frac{d y}{d x}+2 y \frac{d y}{d x} & =2 x-y \\
\frac{d y}{d x} & =\frac{2 x-y}{x+2 y}
\end{aligned}
$$

So, at $x=2$ and $y=1$, this gives us that $\frac{d y}{d x}=\frac{3}{4}$.

Let $F(x)=\int_{0}^{x} f(t) d t$ for x in the interval $[0,9]$, where $f(t)$ is the function with the graph shown in the following picture. This function F will be used for Problems 11 and 12 on this page.

11. Find $F(6)$.
A. -3
B. 3
C. 4
D. 12
E. 13
12. Which of the following statements is true?
A. F is decreasing on the interval $[3,5]$.
B. F is increasing on the interval $[6,9]$.
C. F has a local minimum at 5 .
D. F has a local maximum at 4 .
E. $F(5)=F(6)$.

Free Response Questions

Show all of your work

13. Compute the following antiderivatives. These are also called indefinite integrals.
(a) $\int \frac{2 e^{x}}{\left(5 e^{x}+3\right)^{4}} d x$

Solution: Let $u=5 e^{x}+3$, then $d u=5 e^{x} d x$. Then,

$$
\int \frac{2 e^{x}}{\left(5 e^{x}+3\right)^{4}} d x=\frac{2}{5} \int u^{-4} d u=-\frac{2}{15} u^{-3}+C=-\frac{2}{15}\left(5 e^{x}+3\right)^{-3}+C
$$

(b) $\int x \sqrt{x+1} d x$

Solution: Let $u=x+1$, then $d u=d x$ and $x=u-1$. Then,

$$
\begin{aligned}
\int x \sqrt{x+1} d x & =\int(u-1) \sqrt{u} d u=\int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C=\frac{2}{5}(x+1)^{5 / 2}-\frac{2}{3}(x+1)^{3 / 2}+C
\end{aligned}
$$

(c) $\int \frac{\cos (x)}{(1+\sin (x))^{3}} d x$

Solution: Let $u=1+\sin x$, then $d u=\cos x d x$.

$$
\int \frac{\cos x}{(1+\sin x)^{3}} d x=\int \frac{1}{u^{3}} d u=\int u^{-3} d u=-\frac{1}{2} u^{-2}+C=-\frac{1}{2}(1+\sin x)^{-2}+C
$$

14. (a) What does it mean for a function $f(x)$ to be continuous at a point $x=a$? Use complete sentences.

Solution: A function $f(x)$ is continuous at a point $x=a$ if the following three conditions hold:
(1) $f(a)$ exists; i.e., the function has a value at $x=a$;
(2) $\lim _{x \rightarrow a} f(x)$ exists; i.e., the function has a limit at $x=a$;
(3) $\lim _{x \rightarrow a} f(x)=f(a)$; i.e., the limit at $x=a$ and the functional value $f(a)$ are the same.
(b) Consider the piecewise defined function

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } 0 \leq x<2 \\ a x^{2}-b x+3 & \text { if } 2 \leq x<3 \\ 2 x-a+b & \text { if } 3 \leq x \leq 5\end{cases}
$$

where a and b are constants. Find the values of a and b for which $f(x)$ is continuous on $[0,5]$.

Solution: We need to check for continuity at $x=2$ and at $x=3$. Elsewhere, the function is continuous.
At $x=2$ we need the left-hand limit to equal the right-hand limit.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}=4 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} a x^{2}-b x+3=4 a-2 b+3
\end{aligned}
$$

Thus, $4 a-2 b+3=4$ or $4 a-2 b=1$.
At $x=3$ we need the left-hand limit to equal the right-hand limit.

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} a x^{2}-b x+3=9 a-3 b+3 \\
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 2 x-a+b=6-a+b
\end{aligned}
$$

Thus, $9 a-3 b+3=6-a+b$ or $10 a-4 b=3$.
Solving the system of equations:

$$
\begin{array}{r}
4 a-2 b=1 \\
10 a-4 b=3
\end{array}
$$

gives $a=\frac{1}{2}$ and $b=\frac{1}{2}$.
15. Let a and b be positive numbers whose product is 8 . Find the minimum value of $a^{2}+2 b$. Determine the values of a and b for which the minimum is attained.

Solution: We are given that $a b=8$ and we want to minimize $a^{2}+2 b$. Solving the first equation for b gives $b=\frac{8}{a}$. Plugging this into the second equation we have a
function of one variable, $f(a)=a^{2}+\frac{16}{a}$. We need to find the critical points for f.

$$
\begin{aligned}
& f(a)=a^{2}+\frac{16}{a} \\
& f^{\prime}(a)=2 a-\frac{16}{a^{2}}
\end{aligned}
$$

Setting $f^{\prime}(a)=0$ gives us that $a=2$ as the single critical point for f. The second derivative for f is

$$
f^{\prime \prime}(a)=2+\frac{32}{a^{3}}
$$

For a positive, the second derivative is always positive and hence concave up. This gives us an absolute minimum at $a=2$. Thus, the values for which the minimum is attained are $a=2$ and $b=4$.
16. A particle moves in a straight line so that its velocity at time t seconds is $v(t)=12-2 t$ feet per second.
(a) Find the displacement of the particle over the time interval $[0,8]$.

Solution:

$$
\text { displacement }=\int_{0}^{8} 12-2 t d t=12 t-\left.t^{2}\right|_{0} ^{8}=96-64=32 \text { feet }
$$

(b) Find the total distance traveled by the particle over the time interval $[0,8]$.

Solution: $12-2 t=0$ at $t=6$ so the function changes sign in the interval. Thus, the distance traveled is given by

$$
\begin{aligned}
\text { distance } & =\int_{0}^{6} 12-2 t d t+\left|\int_{6}^{8} 12-2 t d t\right| \\
& =12 t-\left.t^{2}\right|_{0} ^{6}+\left|12 t-t^{2}\right|_{6}^{8} \\
& =36+|96-64-72+36| \\
& =36+4 \\
& =40 \text { feet }
\end{aligned}
$$

