David Royster Assignment Exam04 due 12/04/2020 at 08:00pm EST

1. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem02.pg

A ball is thrown up in the air so that its height at time t is $h(t) = -5t^2 + 40t$ meters. Find the velocity when the ball is at its greatest height.

- A. -35 meters per second
- B. -40 meters per second
- C. 40 meters per second
- D. 0 meters per second
- E. 35 meters per second

2. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem04.pg

Find the tangent line to the curve $2x^2 + 3y^2 = 30$ at the point where x = 3 and the slope is positive.

• A. $y = \frac{1}{2}x - \frac{7}{2}$ • B. y = x + 5• C. y = x - 5• D. y = 2x - 8• E. $y = \frac{1}{2}x + \frac{7}{2}$

3. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem05.pg

A population satisfies P' = kP, P(0) = 2000 and P(10) = 6000. Give the value of k rounded to two decimal places.

A. k = 0.11
B. k = 0.09
C. k = 0.15
D. k = 0.17
E. k = 0.13

4. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem06.pg

An object is moving along a line so that its velocity at time t is $v(t) = 3t^2 - 4t$ meters/second. Find the change in position between t = 1 and t = 3 seconds. Assume that displacement to the right is positive.

- A. 10 meters to the right
- B. 12 meters to the right
- C. 10 meters to the left
- D. 8 meters to the left

• E. 14 meters to the right

5. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem07.pg

Suppose that $f(x) = \sqrt{9+x}$. Find a second degree Taylor polynomial function p(x) so that p(0) = f(0), p'(0) = f'(0) and p''(0) = f''(0).

- A. $p(x) = 3 + \frac{1}{3}x \frac{1}{108}x^2$ B. $p(x) = 3 + \frac{1}{6}x \frac{1}{108}x^2$ C. $p(x) = 3 + \frac{1}{18}x \frac{1}{108}x^2$ D. $p(x) = 3 + \frac{1}{3}x \frac{1}{54}x^2$ E. $p(x) = 3 + \frac{1}{6}x \frac{1}{216}x^2$

6. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem08.pg

If f and g are continuous functions with f(3) = 3 and $\lim_{x \to 3} [5g(f(x)) - f(x)g(x)] = 4$, find g(3).

- A. 2 • B.3 • C. 1
- D. 5
- E.4

7. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem10.pg

Find the value of *B* such that the function

$$f(x) = \begin{cases} -x^2 + 3 & x \le 1\\ -x + B & x > 1 \end{cases}$$

is continuous.

• A. 1 • B. -3

- C.0
- D. 3
- E. -1

8. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem11.pg

Find the horizontal asymptote of $f(x) = \frac{2e^{-2x} + 5}{e^{x+1}}$.

• A. y = 0

B. y = 5
C. y = ²/_e
D. y = ²
E. Does not exist.

9. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem12.pg

The displacement (in meters) of a particle moving in a straight line is given by $s(t) = t^3 - 8t + 10$ where *t* is measured in seconds. Find the instantaneous velocity when t = 2.

- A. 4 meters per second
- B. 10 meters per second
- C. 8 meters per second
- D. 5 meters per second
- E. 2 meters per second

10. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem13.pg

Let $f(x) = \frac{1}{3}x^3 - 4x$ for $-6 \le x \le 3$. Find the *x* coordinates where *f* has its absolute minimum value and absolute maximum value.

- A. The absolute maximum is at x = -2 and the absolute minimum is at x = 2.
- B. The absolute maximum is at x = -2 and the absolute minimum is at x = -6.
- C. The absolute maximum is at x = 3 and the absolute minimum is at x = -6
- D. The absolute maximum is at x = 2 and the absolute minimum is at x = -6.
- E. The absolute maximum is at x = 3 and the absolute minimum is at x = 2.

11. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem14.pg

Evaluate the limit $\lim_{x\to 0} \frac{e^{2x}-1}{x^3+x}$.

• A. $\frac{1}{3}$ • B. 1 • C. 2 • D. ∞ • E. $\frac{2}{3}$

12. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem16.pg

Evaluate the indefinite integral $\int \frac{2}{x} + e^{-x} dx$.

- A. $2\ln|x| + e^{-x} + C$
- B. $2 e^{-x} + C$
- C. $2x e^{-x} + C$

• D. $x^2 + e^{-x} + C$ • E. $2\ln|x| - e^{-x} + C$

13. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem17.pg

Let
$$f(x) = \int_0^{x^2} \ln(1+t)dt$$
. What is $f'(x)$?
• A. $\ln(1+x^2)$
• B. $x^2 \ln(1+x)$
• C. $2x \ln(1+x)$
• D. $\frac{1}{1+x}$
• E. $2x \ln(1+x^2)$

14. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem18.pg

Let $f(x) = xe^x$. What is the linearization of f at x = 0?

15. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem19.pg

Compute
$$\int_{-1}^{2} \sqrt{x+2} dx$$
.

16. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem20.pg Let f be a differentiable function with $f(\pi/2) = 1$ and $f'(\pi/2) = 3$ and suppose that $h(x) = \cos(x) f(x)$. Find $h'(\pi/2)$. $h'(\pi/2) =$ _____

17. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem21.pg Find $\int_0^6 f(x) dx$ if $f(x) = \begin{cases} 2x, & x < 4\\ 6, & 4 \le x \end{cases}$ $\int_{0}^{6} f(x) dx =$ _____

18. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem22.pg Find the value of $\lim_{x \to 5} \frac{x^2 + 20x - 125}{x^2 - 5x}$. $\lim_{x \to 5} \frac{x^2 + 20x - 125}{x^2 - 5x} = \underline{\qquad}$

19. (5 points) local/GlobalPandemic/Exam04/Ma113_Exam04_problem23.pg

The length of a rectangle is increasing at the rate of 4 cm/sec while its width increases at the rate of 10 cm/sec. Find how fast the area of the rectangle is changing when the length is 4 centimeters and the width is 3 centimeters.

 $_$ cm²/sec

20. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem24.pg Let f be a differentiable function with f(1) = 6 and f'(1) = 4. If $h(x) = f(e^{2x})$, find h'(0). h'(0) =_____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America