1. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem02.pg

A ball is thrown up in the air so that its height at time $t$ is $h(t)=-5 t^{2}+40 t$ meters. Find the velocity when the ball is at its greatest height.
-A. -35 meters per second

- B. -40 meters per second
- C. 40 meters per second
- D. 0 meters per second
- E. 35 meters per second

2. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem04.pg

Find the tangent line to the curve $2 x^{2}+3 y^{2}=30$ at the point where $x=3$ and the slope is positive.

- A. $y=\frac{1}{2} x-\frac{7}{2}$
- B. $y=x+5$
- C. $y=x-5$
- D. $y=2 x-8$
- E. $y=\frac{1}{2} x+\frac{7}{2}$

3. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem05.pg

A population satisfies $P^{\prime}=k P, P(0)=2000$ and $P(10)=6000$. Give the value of $k$ rounded to two decimal places.

- A. $k=0.11$
- B. $k=0.09$
- C. $k=0.15$
- D. $k=0.17$
- E. $k=0.13$

4. (5 points) local/G1obalPandemic/Exam04/MA113_Exam04_problem06.pg

An object is moving along a line so that its velocity at time $t$ is $v(t)=3 t^{2}-4 t$ meters/second. Find the change in position between $t=1$ and $t=3$ seconds. Assume that displacement to the right is positive.

- A. 10 meters to the right
- B. 12 meters to the right
- C. 10 meters to the left
- D. 8 meters to the left
- E. 14 meters to the right

5. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem07.pg

Suppose that $f(x)=\sqrt{9+x}$. Find a second degree Taylor polynomial function $p(x)$ so that $p(0)=f(0)$, $p^{\prime}(0)=f^{\prime}(0)$ and $p^{\prime \prime}(0)=f^{\prime \prime}(0)$.

- A. $p(x)=3+\frac{1}{3} x-\frac{1}{108} x^{2}$
- B. $p(x)=3+\frac{1}{6} x-\frac{1}{108} x^{2}$
- C. $p(x)=3+\frac{1}{18} x-\frac{1}{108} x^{2}$
- D. $p(x)=3+\frac{1}{3} x-\frac{1}{54} x^{2}$
- E. $p(x)=3+\frac{1}{6} x-\frac{1}{216} x^{2}$

6. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem08.pg

If $f$ and $g$ are continuous functions with $f(3)=3$ and $\lim _{x \rightarrow 3}[5 g(f(x))-f(x) g(x)]=4$, find $g(3)$.

- A. 2
- B. 3
- C. 1
- D. 5
- E. 4

7. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem10.pg

Find the value of $B$ such that the function

$$
f(x)= \begin{cases}-x^{2}+3 & x \leq 1 \\ -x+B & x>1\end{cases}
$$

is continuous.

- A. 1
- B. -3
- C. 0
- D. 3
- E. -1

8. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_Problem11.pg

Find the horizontal asymptote of $f(x)=\frac{2 e^{-2 x}+5}{e^{x+1}}$.

- A. $y=0$
- B. $y=5$
- C. $y=\frac{2}{e}$
- D. $y=\stackrel{e}{2}$
- E. Does not exist.

9. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_Problem12.pg

The displacement (in meters) of a particle moving in a straight line is given by $s(t)=t^{3}-8 t+10$ where $t$ is measured in seconds. Find the instantaneous velocity when $t=2$.

- A. 4 meters per second
- B. 10 meters per second
- C. 8 meters per second
- D. 5 meters per second
- E. 2 meters per second

10. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem13.pg

Let $f(x)=\frac{1}{3} x^{3}-4 x$ for $-6 \leq x \leq 3$. Find the $x$ coordinates where $f$ has its absolute minimum value and absolute maximum value.

- A. The absolute maximum is at $x=-2$ and the absolute minimum is at $x=2$.
- B. The absolute maximum is at $x=-2$ and the absolute minimum is at $x=-6$.
- C. The absolute maximum is at $x=3$ and the absolute minimum is at $x=-6$
- D. The absolute maximum is at $x=2$ and the absolute minimum is at $x=-6$.
- E. The absolute maximum is at $x=3$ and the absolute minimum is at $x=2$.

11. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem14.pg

Evaluate the limit $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x^{3}+x}$.

- A. $\frac{1}{3}$
- B. 1
- C. 2
- D. ${ }_{2}^{\infty}$
- E. $\frac{2}{3}$

12. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem16.pg

Evaluate the indefinite integral $\int \frac{2}{x}+e^{-x} d x$.

- A. $2 \ln |x|+e^{-x}+C$
- B. $2-e^{-x}+C$
- C. $2 x-e^{-x}+C$
- D. $x^{2}+e^{-x}+C$
- E. $2 \ln |x|-e^{-x}+C$

13. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem17.pg

Let $f(x)=\int_{0}^{x^{2}} \ln (1+t) d t$. What is $f^{\prime}(x)$ ?

- A. $\ln \left(1+x^{2}\right)$
- B. $x^{2} \ln (1+x)$
- C. $2 x \ln (1+x)$
- D. $\frac{1}{1+x}$
- E. $2 x \ln \left(1+x^{2}\right)$

14. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem18.pg

Let $f(x)=x e^{x}$. What is the linearization of $f$ at $x=0$ ?

- A. $L(x)=x$
- B. $L(x)=x+1$
- C. $L(x)=0$
- D. $L(x)=(x+1) e^{x}$
- E. $L(x)=1$

15. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem19.pg

Compute $\int_{-1}^{2} \sqrt{x+2} d x$.

- A. 2
- B. 7
- C. $14 / 3$
- D. $-1 / 4$
- E. 21/2

16. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem $20 . \mathrm{pg}$

Let $f$ be a differentiable function with $f(\pi / 2)=1$ and $f^{\prime}(\pi / 2)=3$ and suppose that $h(x)=\cos (x) f(x)$. Find $h^{\prime}(\pi / 2)$.
$h^{\prime}(\pi / 2)=$
17. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem21.pg

Find $\int_{0}^{6} f(x) d x$ if

$$
f(x)= \begin{cases}2 x, & x<4 \\ 6, & 4 \leq x\end{cases}
$$

$\int_{0}^{6} f(x) d x=$ $\qquad$
18. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem22.pg

Find the value of $\lim _{x \rightarrow 5} \frac{x^{2}+20 x-125}{x^{2}-5 x}$.
$\lim _{x \rightarrow 5} \frac{x^{2}+20 x-125}{x^{2}-5 x}=$
19. (5 points) local/GlobalPandemic/Exam04/Ma113_Exam04_problem23.pg

The length of a rectangle is increasing at the rate of $4 \mathrm{~cm} / \mathrm{sec}$ while its width increases at the rate of 10 $\mathrm{cm} / \mathrm{sec}$. Find how fast the area of the rectangle is changing when the length is 4 centimeters and the width is 3 centimeters.

$$
\ldots \mathrm{cm}^{2} / \mathrm{sec}
$$

20. (5 points) local/GlobalPandemic/Exam04/MA113_Exam04_problem24.pg

Let $f$ be a differentiable function with $f(1)=6$ and $f^{\prime}(1)=4$. If $h(x)=f\left(e^{2 x}\right)$, find $h^{\prime}(0)$. $h^{\prime}(0)=$ $\qquad$

