Worksheet # 22 and 23: Newton's Method, Antiderivatives, and Area

Due to election day on Tuesday, we have combined two worksheets into one and deleted about half the problems. The full worksheets are available at http://www.math.uky.edu/~ma113/

- 1. Use Newton's method to find an approximation to $\sqrt[3]{2}$. You may do this by finding a solution of $x^3 2 = 0$.
- 2. Use Newton's method to approximate the critical points of the function $f(x) = x^5 7x^2 + x$.
- 3. (a) Let f(x) = x³/3 + 1. Calculate the derivative f'(x). What is an anti-derivative of f'(x)?
 (b) Let g(x) = x² + 1. Let G(x) be any anti-derivative of g. What is G'(x)?
- 4. Find f given that

$$f'(x) = \sin(x) - \sec(x)\tan(x)$$
$$f(\pi) = 1.$$

5. Find g given that

$$g''(t) = -9.8, \qquad g'(0) = 1, \qquad g(0) = 2.$$

On the surface of the earth, the acceleration of an object due to gravity is approximately -9.8 m/s^2 . What situation could we describe using the function g? Be sure to specify what g and its first two derivatives represent.

- 6. Write each of following in summation notation:
 - (a) 1+2+3+4+5+6+7+8+9+10
 - (b) 2+4+6+8+10+12+14
 - (c) 2+4+8+16+32+64+128.
- 7. Compute $\sum_{i=1}^{4} \left(\sum_{j=1}^{3} (i+j) \right)$.

The following formulae will be useful below.

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}, \qquad \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

8. Find the number n such that $\sum_{i=1}^{n} i = 78$.

9. Give the value of the following sums.

(a)
$$\sum_{j=1}^{20} (2k^2 + 3)$$

(b) $\sum_{j=11}^{20} (3k+2)$

- 10. Let $f(x) = \sqrt{1 x^2}$. Divide the interval [0, 1] into four equal subintervals and compute L_4 and R_4 , the left and right-endpoint approximations to the area under the graph of f. Is R_4 larger or smaller than the true area? Is L_4 larger or smaller than the true area? What can you conclude about the value π ?
- 11. Let $f(x) = x^2$.
 - (a) If we divide the interval [0, 2] into n equal intervals of equal length, how long is each interval?
 - (b) Write a sum which gives the right-endpoint approximation R_n to the the area under the graph of f on [0,2].
 - (c) Use one of the formulae for the sums of powers of k to find a closed form expression for R_n .
 - (d) Take the limit of R_n as n tends to infinity to find an exact value for the area.