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1. Estimating
√

2

In one of our MA 113 written assignments, we saw that Newton’s Method can be used to ap-

proximate the value of
√

2 and other roots. In that situation, we estimated the value of
√

2 by

approximating the positive root of x2 − 2 = 0. Another approach, also used extensively by New-

ton1, is to instead find a polynomial that approximates the function
√

1 + x, and then evaluate that

polynomial at x = 1 to estimate
√

1 + 1 =
√

2. Let’s see how this can be done.

Step 1: Linear Approximation. If we use the linearization of f(x) =
√

1 + x at the point

a = 0, then we have

L(x) = f ′(0)(x− 0) + f(0) =
1

2
x + 1 .

Thus, we have
√

1 + 1 ≈ L(1) = 3/2 = 1.5. Since the true value of
√

2 is 1.41421 . . ., this is

reasonable but not particularly accurate. We need something better!

Step 2: Quadratic Approximation. The key idea to higher-order approximations is to

realize that the higher derivatives of f(x) have a role to play. The linearization of f(x), which is

frequently called a “first-order approximation”, only involves the first derivative. Can we use the

second somehow? Yes! Using f(x) =
√

1 + x, define the second-order approximation of f(x) at

a = 0 to be

T2(x) =
f ′′(0)

2
(x− 0)2 + f ′(0)(x− 0) + f(0) =

−1

8
x2 +

1

2
x + 1 .

(The capital T stands for “Taylor”, with the “2” representing the second derivative.) Figure 1

contains the graphs for the functions f(x) =
√

1 + x, L(x), and T2(x) — you see that T2(x) is a

parabola that is tangent to f(x) at the point (0, 1). So what happens when we plug in x = 1 to

T2(x)? We get T2(1) = 1.375, which is a better approximation.

Step 3: Third-order approximation. Going one step further, we can define a third-order

approximation to be

T3(x) =
f (3)(0)

3 · 2
(x− 0)3 +

f ′′(0)

2
(x− 0)2 + f ′(0)(x− 0) + f(0) =

1

16
x3 +

−1

8
x2 +

1

2
x + 1 .

If we evaluate this at x = 1, we get T3(1) = 1.4375, which is an even closer estimate of
√

2. Wow!

Why is this working?

1Newton spent hours and hours thinking about mathematical problems and devising different strategies for solving

the same problem. According to Newton’s colleagues, there were times he would become so focused on a problem he

would forget to eat. There is an important message here: success = (ability × effort × effort × effort). Persistence

matters above all, even for mathematicians and scientists like Newton.
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2. Approximation by Taylor Polynomials

So where did we come up with the formulas for T2(x) and T3(x) in our example above? To

motivate our definitions, we use derivatives. To illustrate how this goes, suppose that we have a

function f(x) and a degree four polynomial that approximates it near the point a, i.e.

f(x) ≈ c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 .

Note that setting x = a, we obtain

f(a) ≈ c0

since all of the terms involving (x− a) will become zero. So, we know the constant term should be

roughly f(a).

Further, we can imagine that since the function and the polynomial are approximately the same,

their derivatives are close as well. Suspending disbelief and hoping that this is true, we have

f ′(x) ≈ c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 .

Setting x = a again, we have

f ′(a) ≈ c1 .
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Continuing to take derivatives and evaluate at x = a, we obtain

f ′′(a) ≈ 2c2

f (3)(a) ≈ 3 · 2c3

f (4)(a) ≈ 4 · 3 · 2c4

A pattern is emerging! Solving for c2, c3, and c4, it appears that we should expect

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(a)

3 · 2
(x− a)3 +

f (4)(a)

4 · 3 · 2
(x− a)4 .

It is an amazing fact that for many functions, this type of approximation holds.

Definition 2.1. Let f(x) be infinitely differentiable on an open interval I. Let a be in I. Define

the n-th Taylor polynomial for f(x) to be

Tn(x) = f(a) + f ′(a)(x−a) +
f ′′(a)

2
(x−a)2 +

f (3)(a)

3 · 2
(x−a)3 + · · ·+ f (n)(a)

n · (n− 1) · · · 4 · 3 · 2
(x−a)n .

IMPORTANT POINT: For many functions that we use in math and science, Taylor polyno-

mials serve as good approximations for the functions. However, there are functions which are not

approximated well by their Taylor polynomials. It took mathematicians over 100 years to discover

this fact, so it is a subtle point. The following theorem provides a few functions with which we are

free to use Taylor polynomials without concern for this subtlety.

Theorem 2.2. Suppose that f(x) is one of the following functions:

• any polynomial

• ex

• sin(x) or cos(x)

• (1 + x)k for some real number k

For the first three functions, for any choice of a defining Tn(x) and for any value of x, we have

lim
n→∞

Tn(x) = f(x) .

For the fourth function, if we choose a = 0 and any x in (−1, 1], the limit will hold. Thus, we can

use Tn(x) to approximate2 f(x) for these functions.

3. Examples

We now use this theorem to find some approximations for values that are both familiar and

unfamiliar.

2The limit condition we have given here is known as pointwise convergence. There is a stronger notion of approx-

imation of functions called uniform convergence which is both incredibly important and more complicated.
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Example 3.1. Returning to our original example f(x) =
√

1 + x, setting a = 0 and computing

the first six derivatives gives us

√
1 + x ≈ T6(x) = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − 21

1024
x6 .

Doing so yields
√

2 ≈ 1439

1024
= 1.4052734375 .

Example 3.2. Since dn

dxn (ex) = ex and e0 = 1, we can set a = 0 and obtain

ex ≈ Tn(x) = 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + · · ·+ 1

n · (n− 1) · · · 4 · 3 · 2
xn .

From this it follows that

e ≈ 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+ 1

n · (n− 1) · · · 4 · 3 · 2
.

Setting n = 5 we obtain e ≈ 163
60 = 2.716666 . . . which is correct to two digits.

Example 3.3. The functions sin(x) and cos(x) are particularly nice, because their derivatives have

a repeating pattern. Thus, we have that

sin(x) ≈ x− x3

6
+

x5

120
− x7

5040
+

x9

362880
+ · · ·+ (−1)n

x2n+1

(2n + 1) · (2n) · · · 3 · 2
.

and cos(x) has a similar approximation. From this, we can estimate

sin(1) ≈ T9(1) = 305353/362880 = 0.8414 . . . .

Example 3.4. Suppose you want to estimate
∫ 1
0 sin(x2) dx. We don’t know how to find a nice

anti-derivative for sin(x2), so instead we use a Taylor polynomial with a = 0. We can obtain a

Taylor polynomial for this function by substituting x2 for x in a Taylor polynomial for sin(x); here

we’ve used a seventh-order Taylor polynomial for sin(x):

sin(x2) ≈ x2 − x6

6
+

x10

120
− x14

5040

Thus, we have∫ 1

0
sin(x2) dx ≈

∫ 1

0

(
x2 − x6

6
+

x10

120
− x14

5040

)
dx = 258019/831600 ≈ 0.31027 .

WolframAlpha computes that ∫ 1

0
sin(x2) dx ≈ 0.310268 . . . ,

thus our approximation using a Taylor polynomial is quite accurate!


